Volodymyr Zyabrev, B. Demydchuk, V. Zhirnov, V. Brovarets
{"title":"Synthesis, Characterization, and in Vitro Anticancer Evaluation of 2-Aryl-4-Arylsulfonyl-5-RS-1,3-Oxazoles","authors":"Volodymyr Zyabrev, B. Demydchuk, V. Zhirnov, V. Brovarets","doi":"10.33263/briac134.336","DOIUrl":null,"url":null,"abstract":"A novel series of 4-arylsulfonyl-1,3-oxazoles have been synthesized and characterized by IR, 1H NMR, 13C NMR spectroscopy, elemental analysis, and chromato-mass-spectrometry. The anticancer activities of all the newly synthesized compounds were evaluated via a single high dose (10 µM) against 59 cancer cell lines (without Melanoma SK-MEL-5) by the National Cancer Institute according to its screening protocol. Among these compounds, 2-[4-(4-chlorophenyl)sulfonyl-2-phenyl-oxazol-5-yl]sulfanyl-N-(2,4-dimethoxyphenyl)acetamide exhibited the highest activity against lines SNB75 and SF-539 of the CNS Cancer subpanel present in Glioblastoma and Gliosarcoma, respectively, exerting a cytostatic effect. 2-[4-(4-Bromophenyl)sulfonyl-2-phenyl-oxazol-5-yl]sulfanylacetamide has the highest antiproliferative activity against the HOP-92 (carcinoma) of the Non-Small Cell Lung Cancer subpanel, while N-(4-ethoxyphenyl)-2-[2-phenyl-4-(p-tolylsulfonyl)oxazol-5-yl]sulfanyl-acetamide exhibits cytotoxic activity against NCI-H226 (pleural mesothelioma) the Lung subpanel. The COMPARE analysis showed that the average graphs of the tested compounds have a weak or slightly moderate positive correlation with compounds with a known mechanism of antitumor activity, suggesting its specificity. These compounds demonstrated the anticancer activity against different individual cancer cell lines. This makes it possible to consider it a leading compound for further in-depth studies and synthesis of new 4-arylsulfonyl-1,3-derivatives oxazole with antitumor activity.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
A novel series of 4-arylsulfonyl-1,3-oxazoles have been synthesized and characterized by IR, 1H NMR, 13C NMR spectroscopy, elemental analysis, and chromato-mass-spectrometry. The anticancer activities of all the newly synthesized compounds were evaluated via a single high dose (10 µM) against 59 cancer cell lines (without Melanoma SK-MEL-5) by the National Cancer Institute according to its screening protocol. Among these compounds, 2-[4-(4-chlorophenyl)sulfonyl-2-phenyl-oxazol-5-yl]sulfanyl-N-(2,4-dimethoxyphenyl)acetamide exhibited the highest activity against lines SNB75 and SF-539 of the CNS Cancer subpanel present in Glioblastoma and Gliosarcoma, respectively, exerting a cytostatic effect. 2-[4-(4-Bromophenyl)sulfonyl-2-phenyl-oxazol-5-yl]sulfanylacetamide has the highest antiproliferative activity against the HOP-92 (carcinoma) of the Non-Small Cell Lung Cancer subpanel, while N-(4-ethoxyphenyl)-2-[2-phenyl-4-(p-tolylsulfonyl)oxazol-5-yl]sulfanyl-acetamide exhibits cytotoxic activity against NCI-H226 (pleural mesothelioma) the Lung subpanel. The COMPARE analysis showed that the average graphs of the tested compounds have a weak or slightly moderate positive correlation with compounds with a known mechanism of antitumor activity, suggesting its specificity. These compounds demonstrated the anticancer activity against different individual cancer cell lines. This makes it possible to consider it a leading compound for further in-depth studies and synthesis of new 4-arylsulfonyl-1,3-derivatives oxazole with antitumor activity.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.