Voltage Differencing Current Conveyor Based Voltage-Mode and Current-Mode Universal Biquad Filters with Electronic Tuning Facility

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
Suvajit Roy, Tapas Kumar Paul, Saikat Maiti, R. Pal
{"title":"Voltage Differencing Current Conveyor Based Voltage-Mode and Current-Mode Universal Biquad Filters with Electronic Tuning Facility","authors":"Suvajit Roy, Tapas Kumar Paul, Saikat Maiti, R. Pal","doi":"10.46604/IJETI.2021.6821","DOIUrl":null,"url":null,"abstract":"The objective of this study is to present four new universal biquad filters, two voltage-mode multi-input-single-output (MISO), and two current-mode single-input-multi-output (SIMO). The filters employ one voltage differencing current conveyor (VDCC) as an active element and two capacitors along with two resistors as passive elements. All the five filter responses, i.e., high-pass, low-pass, band-pass, band-stop, and all-pass responses, are obtained from the same circuit topology. Moreover, the pole frequency and quality factor are independently tunable. Additionally, they do not require any double/inverted input signals for response realization. Furthermore, they enjoy low active and passive sensitivities. Various regular analyses support the design ideas. The functionality of the presented filters are tested by PSPICE simulations using TSMC 0.18 μm technology parameters with ± 0.9 V supply voltage. The circuits are also justified experimentally by creating the VDCC block using commercially available OPA860 ICs. The experimental and simulation results agree well with the theoretically predicted results.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/IJETI.2021.6821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

The objective of this study is to present four new universal biquad filters, two voltage-mode multi-input-single-output (MISO), and two current-mode single-input-multi-output (SIMO). The filters employ one voltage differencing current conveyor (VDCC) as an active element and two capacitors along with two resistors as passive elements. All the five filter responses, i.e., high-pass, low-pass, band-pass, band-stop, and all-pass responses, are obtained from the same circuit topology. Moreover, the pole frequency and quality factor are independently tunable. Additionally, they do not require any double/inverted input signals for response realization. Furthermore, they enjoy low active and passive sensitivities. Various regular analyses support the design ideas. The functionality of the presented filters are tested by PSPICE simulations using TSMC 0.18 μm technology parameters with ± 0.9 V supply voltage. The circuits are also justified experimentally by creating the VDCC block using commercially available OPA860 ICs. The experimental and simulation results agree well with the theoretically predicted results.
带电子调谐装置的电压型和电流型通用双路滤波器
本研究的目的是提出四种新的通用双二阶滤波器,两电压模式多输入单输出(MISO)和两电流模式单输入多输出(SIMO)。滤波器采用一个压差电流传送器(VDCC)作为有源元件,使用两个电容器以及两个电阻器作为无源元件。所有五个滤波器响应,即高通、低通、带通、带阻和全通响应,都是从相同的电路拓扑中获得的。此外,极点频率和质量因子是独立可调的。此外,它们不需要任何双/反相输入信号来实现响应。此外,它们的主动和被动敏感度较低。各种定期分析支持设计理念。所提出的滤波器的功能通过PSPICE模拟进行了测试,使用TSMC 0.18μm技术参数和±0.9 V电源电压。还通过使用市售的OPA860 IC创建VDCC块来对电路进行实验验证。实验和仿真结果与理论预测结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信