Ricci almost solitons with associated projective vector field

IF 0.5 4区 数学 Q3 MATHEMATICS
Ramesh Sharma, Sharief Deshmukh
{"title":"Ricci almost solitons with associated projective vector field","authors":"Ramesh Sharma, Sharief Deshmukh","doi":"10.1515/advgeom-2021-0034","DOIUrl":null,"url":null,"abstract":"Abstract A Ricci almost soliton whose associated vector field is projective is shown to have vanishing Cotton tensor, divergence-free Bach tensor and Ricci tensor as conformal Killing. For the compact case, a sharp inequality is obtained in terms of scalar curvature.We show that every complete gradient Ricci soliton is isometric to the Riemannian product of a Euclidean space and an Einstein space. A complete K-contact Ricci almost soliton whose associated vector field is projective is compact Einstein and Sasakian.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract A Ricci almost soliton whose associated vector field is projective is shown to have vanishing Cotton tensor, divergence-free Bach tensor and Ricci tensor as conformal Killing. For the compact case, a sharp inequality is obtained in terms of scalar curvature.We show that every complete gradient Ricci soliton is isometric to the Riemannian product of a Euclidean space and an Einstein space. A complete K-contact Ricci almost soliton whose associated vector field is projective is compact Einstein and Sasakian.
具有相关射影向量场的里奇几乎孤子
摘要证明了关联向量场是投影的Ricci几乎孤立子具有消失的Cotton张量、无散度的Bach张量和Ricci张量作为保角Killing。对于紧致情形,得到了一个关于标量曲率的尖锐不等式。我们证明了每一个完全梯度Ricci孤立子都等距于欧几里得空间和爱因斯坦空间的黎曼乘积。一个完整的K接触Ricci几乎孤立子,其关联向量场是射影的,是紧致的Einstein和Sasakian。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信