Dynamic optimal mean-variance portfolio selection with stochastic volatility and stochastic interest rate

IF 0.8 Q4 BUSINESS, FINANCE
Yumo Zhang
{"title":"Dynamic optimal mean-variance portfolio selection with stochastic volatility and stochastic interest rate","authors":"Yumo Zhang","doi":"10.1007/s10436-022-00414-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies optimal portfolio selection problems in the presence of stochastic volatility and stochastic interest rate under the mean-variance criterion. The financial market consists of a risk-free asset (cash), a zero-coupon bond (roll-over bond), and a risky asset (stock). Specifically, we assume that the interest rate follows the Vasicek model, and the risky asset’s return rate not only depends on a Cox-Ingersoll-Ross (CIR) process but also has stochastic covariance with the interest rate, which embraces the family of the state-of-the-art 4/2 stochastic volatility models as an exceptional case. By adopting a backward stochastic differential equation (BSDE) approach and solving two related BSDEs, we derive, in closed form, the static optimal (time-inconsistent) strategy and optimal value function. Given the time inconsistency of the mean-variance criterion, a dynamic formulation of the problem is further investigated and the explicit expression for the dynamic optimal (time-consistent) strategy is derived. In addition, analytical solutions to some special cases of our model are provided. Finally, the impact of the model parameters on the efficient frontier and the behavior of the static and dynamic optimal asset allocations is illustrated with numerical examples.</p></div>","PeriodicalId":45289,"journal":{"name":"Annals of Finance","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Finance","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10436-022-00414-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies optimal portfolio selection problems in the presence of stochastic volatility and stochastic interest rate under the mean-variance criterion. The financial market consists of a risk-free asset (cash), a zero-coupon bond (roll-over bond), and a risky asset (stock). Specifically, we assume that the interest rate follows the Vasicek model, and the risky asset’s return rate not only depends on a Cox-Ingersoll-Ross (CIR) process but also has stochastic covariance with the interest rate, which embraces the family of the state-of-the-art 4/2 stochastic volatility models as an exceptional case. By adopting a backward stochastic differential equation (BSDE) approach and solving two related BSDEs, we derive, in closed form, the static optimal (time-inconsistent) strategy and optimal value function. Given the time inconsistency of the mean-variance criterion, a dynamic formulation of the problem is further investigated and the explicit expression for the dynamic optimal (time-consistent) strategy is derived. In addition, analytical solutions to some special cases of our model are provided. Finally, the impact of the model parameters on the efficient frontier and the behavior of the static and dynamic optimal asset allocations is illustrated with numerical examples.

Abstract Image

随机波动率和随机利率下的动态最优均值方差投资组合选择
本文在均值方差准则下研究了随机波动率和随机利率存在下的最优投资组合选择问题。金融市场由无风险资产(现金)、零息债券(展期债券)和风险资产(股票)组成。具体而言,我们假设利率遵循Vasicek模型,风险资产的回报率不仅取决于Cox-Ingersoll-Ross(CIR)过程,而且与利率具有随机协方差,这包括了最先进的4/2随机波动率模型家族作为例外情况。通过采用反向随机微分方程(BSDE)方法并求解两个相关的BSDE,我们以闭合形式导出了静态最优(时间不一致)策略和最优值函数。考虑到均方差准则的时间不一致性,进一步研究了问题的动态公式,并导出了动态最优(时间一致)策略的显式表达式。此外,还对模型中的一些特殊情况给出了解析解。最后,通过数值例子说明了模型参数对有效边界的影响以及静态和动态最优资产配置的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Finance
Annals of Finance BUSINESS, FINANCE-
CiteScore
2.00
自引率
10.00%
发文量
15
期刊介绍: Annals of Finance provides an outlet for original research in all areas of finance and its applications to other disciplines having a clear and substantive link to the general theme of finance. In particular, innovative research papers of moderate length of the highest quality in all scientific areas that are motivated by the analysis of financial problems will be considered. Annals of Finance''s scope encompasses - but is not limited to - the following areas: accounting and finance, asset pricing, banking and finance, capital markets and finance, computational finance, corporate finance, derivatives, dynamical and chaotic systems in finance, economics and finance, empirical finance, experimental finance, finance and the theory of the firm, financial econometrics, financial institutions, mathematical finance, money and finance, portfolio analysis, regulation, stochastic analysis and finance, stock market analysis, systemic risk and financial stability. Annals of Finance also publishes special issues on any topic in finance and its applications of current interest. A small section, entitled finance notes, will be devoted solely to publishing short articles – up to ten pages in length, of substantial interest in finance. Officially cited as: Ann Finance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信