{"title":"Dynamic optimal mean-variance portfolio selection with stochastic volatility and stochastic interest rate","authors":"Yumo Zhang","doi":"10.1007/s10436-022-00414-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies optimal portfolio selection problems in the presence of stochastic volatility and stochastic interest rate under the mean-variance criterion. The financial market consists of a risk-free asset (cash), a zero-coupon bond (roll-over bond), and a risky asset (stock). Specifically, we assume that the interest rate follows the Vasicek model, and the risky asset’s return rate not only depends on a Cox-Ingersoll-Ross (CIR) process but also has stochastic covariance with the interest rate, which embraces the family of the state-of-the-art 4/2 stochastic volatility models as an exceptional case. By adopting a backward stochastic differential equation (BSDE) approach and solving two related BSDEs, we derive, in closed form, the static optimal (time-inconsistent) strategy and optimal value function. Given the time inconsistency of the mean-variance criterion, a dynamic formulation of the problem is further investigated and the explicit expression for the dynamic optimal (time-consistent) strategy is derived. In addition, analytical solutions to some special cases of our model are provided. Finally, the impact of the model parameters on the efficient frontier and the behavior of the static and dynamic optimal asset allocations is illustrated with numerical examples.</p></div>","PeriodicalId":45289,"journal":{"name":"Annals of Finance","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Finance","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10436-022-00414-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies optimal portfolio selection problems in the presence of stochastic volatility and stochastic interest rate under the mean-variance criterion. The financial market consists of a risk-free asset (cash), a zero-coupon bond (roll-over bond), and a risky asset (stock). Specifically, we assume that the interest rate follows the Vasicek model, and the risky asset’s return rate not only depends on a Cox-Ingersoll-Ross (CIR) process but also has stochastic covariance with the interest rate, which embraces the family of the state-of-the-art 4/2 stochastic volatility models as an exceptional case. By adopting a backward stochastic differential equation (BSDE) approach and solving two related BSDEs, we derive, in closed form, the static optimal (time-inconsistent) strategy and optimal value function. Given the time inconsistency of the mean-variance criterion, a dynamic formulation of the problem is further investigated and the explicit expression for the dynamic optimal (time-consistent) strategy is derived. In addition, analytical solutions to some special cases of our model are provided. Finally, the impact of the model parameters on the efficient frontier and the behavior of the static and dynamic optimal asset allocations is illustrated with numerical examples.
期刊介绍:
Annals of Finance provides an outlet for original research in all areas of finance and its applications to other disciplines having a clear and substantive link to the general theme of finance. In particular, innovative research papers of moderate length of the highest quality in all scientific areas that are motivated by the analysis of financial problems will be considered. Annals of Finance''s scope encompasses - but is not limited to - the following areas: accounting and finance, asset pricing, banking and finance, capital markets and finance, computational finance, corporate finance, derivatives, dynamical and chaotic systems in finance, economics and finance, empirical finance, experimental finance, finance and the theory of the firm, financial econometrics, financial institutions, mathematical finance, money and finance, portfolio analysis, regulation, stochastic analysis and finance, stock market analysis, systemic risk and financial stability. Annals of Finance also publishes special issues on any topic in finance and its applications of current interest. A small section, entitled finance notes, will be devoted solely to publishing short articles – up to ten pages in length, of substantial interest in finance. Officially cited as: Ann Finance