Identification of FOXM1 and CXCR4 as key genes in breast cancer prevention and prognosis after intermittent energy restriction through bioinformatics and functional analyses
Lusha Li, Liangli Chen, Li Yu, Junlu Zhang, Liying Chen
{"title":"Identification of FOXM1 and CXCR4 as key genes in breast cancer prevention and prognosis after intermittent energy restriction through bioinformatics and functional analyses","authors":"Lusha Li, Liangli Chen, Li Yu, Junlu Zhang, Liying Chen","doi":"10.1080/21623945.2022.2069311","DOIUrl":null,"url":null,"abstract":"ABSTRACT We explored potential biomarkers and molecular mechanisms regarding breast cancer (BC) risk reduction after intermittent energy restriction (IER) and further explored the association between IER and BC prognosis. We identified differentially expressed genes (DEGs) in breast tissues before and after IER by analyzing the expression profile from GEO. Then, enrichment analysis was used to identify important pathways of DEGs and hub genes were selected from PPI network. After that, GEPIA, ROC, and KM plotter were used to explore the preventive and prognostic value of hub genes. It was found that FOXM1 and CXCR4 were highly expressed in BC tissues and associated with the worse prognosis. FOXM1 and CXCR4 were down-regulated after IER , which meant that FOXM1 and CXCR4 might be the most important key genes for reducing the risk and improving prognosis of BC after IER . ROC curve indicated that FOXM1 and CXCR4 also had the predictive value for BC. Our study contributed to a better understanding of the specific mechanisms in protective effects of IER on BC and provided a new approach to improve the prognosis of BC, which might provide partial guidance for the subsequent development of more effective treatments and prevention strategies.","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"301 - 314"},"PeriodicalIF":3.5000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2022.2069311","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT We explored potential biomarkers and molecular mechanisms regarding breast cancer (BC) risk reduction after intermittent energy restriction (IER) and further explored the association between IER and BC prognosis. We identified differentially expressed genes (DEGs) in breast tissues before and after IER by analyzing the expression profile from GEO. Then, enrichment analysis was used to identify important pathways of DEGs and hub genes were selected from PPI network. After that, GEPIA, ROC, and KM plotter were used to explore the preventive and prognostic value of hub genes. It was found that FOXM1 and CXCR4 were highly expressed in BC tissues and associated with the worse prognosis. FOXM1 and CXCR4 were down-regulated after IER , which meant that FOXM1 and CXCR4 might be the most important key genes for reducing the risk and improving prognosis of BC after IER . ROC curve indicated that FOXM1 and CXCR4 also had the predictive value for BC. Our study contributed to a better understanding of the specific mechanisms in protective effects of IER on BC and provided a new approach to improve the prognosis of BC, which might provide partial guidance for the subsequent development of more effective treatments and prevention strategies.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.