{"title":"Effects of Heat Generation/Absorption on Magnetohydrodynamics Flow Over a Vertical Plate with Convective Boundary Condition","authors":"B. J. Akinbo, B. Olajuwon","doi":"10.13052/ejcm2642-2085.30466","DOIUrl":null,"url":null,"abstract":"Heat generation effect in a steady two-dimensional magnetohydrodynamics (MHD) flow over a moving vertical plate with a medium porosity has been studied. By similarity transformation variables, the coupled non-linear ordinary differential equations describing the model are obtained. The resulting equation is then solved, using Galerkin Weighted Residual Method (GWRM), where the effect of heat generation, Magnetic Parameter as well as other physical parameters encountered were examined and discussed. Some of the major findings were that increase in heat generation and convective heat parameter enhances the plate surface temperature as well as temperature field which allows the thermal effect to penetrate deeper into the quiescent fluid.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.30466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2
Abstract
Heat generation effect in a steady two-dimensional magnetohydrodynamics (MHD) flow over a moving vertical plate with a medium porosity has been studied. By similarity transformation variables, the coupled non-linear ordinary differential equations describing the model are obtained. The resulting equation is then solved, using Galerkin Weighted Residual Method (GWRM), where the effect of heat generation, Magnetic Parameter as well as other physical parameters encountered were examined and discussed. Some of the major findings were that increase in heat generation and convective heat parameter enhances the plate surface temperature as well as temperature field which allows the thermal effect to penetrate deeper into the quiescent fluid.