Koen van der Horst, Ibrahim Diab, Gautham Ram Chandra Mouli, Pavol Bauer
{"title":"Methods for increasing the potential of integration of EV chargers into the DC catenary of electric transport grids: A trolleygrid case study","authors":"Koen van der Horst, Ibrahim Diab, Gautham Ram Chandra Mouli, Pavol Bauer","doi":"10.1016/j.etran.2023.100271","DOIUrl":null,"url":null,"abstract":"<div><p>The traction substations of urban electric transport grids are oversized and underutilized in terms of their capacity. While their over-sizing is an unfortunate waste, their under-utilization creates the major hurdle for the integration of renewables into these grids due to the lack of a base load. Therefore, integrating smart grid loads such as EV chargers is not only an opportunity but a necessity for the sustainable transport grid of the future.</p><p>This paper examines six methods for increasing the potential of EV chargers in three case studies of a trolleygrid, namely a higher substation no-load voltage, a higher substation power capacity, a smart charging method, adding a third overheard parallel line, adding a bilateral connection, and installing a multi-port converter between two substations. From the case studies, the most promising and cost-effective method seems to be introducing a bilateral connection, bringing a charging capacity for up to 175 electric cars per day. Meanwhile, other costly and complex methods, such as smart charging with grid state sensors and communication, can offer charging room for over 200 electric cars per day. Furthermore, using solar PV systems to power the grid showed a more than doubling of the directly utilized energy by installing a 150kW charger, from 19% to 41%. This reduces the power mismatch between the trolleygrid and the PV system from 81% to 59% and thereby reduces the severe economic need for storage, AC grid power exchange, or PV power curtailment while allowing a high penetration of renewables.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"18 ","pages":"Article 100271"},"PeriodicalIF":15.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116823000462","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
The traction substations of urban electric transport grids are oversized and underutilized in terms of their capacity. While their over-sizing is an unfortunate waste, their under-utilization creates the major hurdle for the integration of renewables into these grids due to the lack of a base load. Therefore, integrating smart grid loads such as EV chargers is not only an opportunity but a necessity for the sustainable transport grid of the future.
This paper examines six methods for increasing the potential of EV chargers in three case studies of a trolleygrid, namely a higher substation no-load voltage, a higher substation power capacity, a smart charging method, adding a third overheard parallel line, adding a bilateral connection, and installing a multi-port converter between two substations. From the case studies, the most promising and cost-effective method seems to be introducing a bilateral connection, bringing a charging capacity for up to 175 electric cars per day. Meanwhile, other costly and complex methods, such as smart charging with grid state sensors and communication, can offer charging room for over 200 electric cars per day. Furthermore, using solar PV systems to power the grid showed a more than doubling of the directly utilized energy by installing a 150kW charger, from 19% to 41%. This reduces the power mismatch between the trolleygrid and the PV system from 81% to 59% and thereby reduces the severe economic need for storage, AC grid power exchange, or PV power curtailment while allowing a high penetration of renewables.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.