On the structure of lower bounded HNN extensions

Pub Date : 2023-08-10 DOI:10.1017/S001708952300023X
Paul Bennett, T. Jajcayová
{"title":"On the structure of lower bounded HNN extensions","authors":"Paul Bennett, T. Jajcayová","doi":"10.1017/S001708952300023X","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if \n$S^* = [ S;\\; U_1,U_2;\\; \\phi ]$\n is a lower bounded HNN extension then the maximal subgroups of \n$S^*$\n may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the \n$\\mathcal{D}$\n -classes of \n$S$\n , \n$U_1$\n and \n$U_2$\n . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite \n$\\mathcal{R}$\n -classes, residual finiteness, being \n$E$\n -unitary, and \n$0$\n - \n$E$\n -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S001708952300023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if $S^* = [ S;\; U_1,U_2;\; \phi ]$ is a lower bounded HNN extension then the maximal subgroups of $S^*$ may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the $\mathcal{D}$ -classes of $S$ , $U_1$ and $U_2$ . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite $\mathcal{R}$ -classes, residual finiteness, being $E$ -unitary, and $0$ - $E$ -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.
分享
查看原文
下界HNN扩展的结构
摘要研究了由jajcayov引入的逆半群的下界HNN扩展的结构和保存性质。我们证明如果$S^* = [S;\;U_2 U_1; \;\phi]$是一个下界HNN扩展,则$S^*$的极大子群可以用Bass-Serre理论描述为由$S$, $U_1$和$U_2$的$\数学{D}$类定义的群的某些图的基群。然后,我们得到了在HNN可拓构造下逆半群性质保持的一些结果。所考虑的性质是完全半简单性,具有有限的$\mathcal{R}$ -类,剩余有限性,$E$ -酉和$0$ - $E$ -酉。给出了一个例子,如多环逆单阵的HNN扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信