{"title":"On the structure of lower bounded HNN extensions","authors":"Paul Bennett, T. Jajcayová","doi":"10.1017/S001708952300023X","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if \n$S^* = [ S;\\; U_1,U_2;\\; \\phi ]$\n is a lower bounded HNN extension then the maximal subgroups of \n$S^*$\n may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the \n$\\mathcal{D}$\n -classes of \n$S$\n , \n$U_1$\n and \n$U_2$\n . We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite \n$\\mathcal{R}$\n -classes, residual finiteness, being \n$E$\n -unitary, and \n$0$\n - \n$E$\n -unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S001708952300023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper studies the structure and preservational properties of lower bounded HNN extensions of inverse semigroups, as introduced by Jajcayová. We show that if
$S^* = [ S;\; U_1,U_2;\; \phi ]$
is a lower bounded HNN extension then the maximal subgroups of
$S^*$
may be described using Bass-Serre theory, as the fundamental groups of certain graphs of groups defined from the
$\mathcal{D}$
-classes of
$S$
,
$U_1$
and
$U_2$
. We then obtain a number of results concerning when inverse semigroup properties are preserved under the HNN extension construction. The properties considered are completely semisimpleness, having finite
$\mathcal{R}$
-classes, residual finiteness, being
$E$
-unitary, and
$0$
-
$E$
-unitary. Examples are given, such as an HNN extension of a polycylic inverse monoid.