Structure and Tribological Properties of a Ti–TiN Coating Obtained by Hypersonic Metallization

IF 0.5 4区 工程技术 Q4 ENGINEERING, MECHANICAL
V. A. Kukareko, M. A. Belotserkovsky, A. N. Grigorchik, A. V. Sosnovskiy
{"title":"Structure and Tribological Properties of a Ti–TiN Coating Obtained by Hypersonic Metallization","authors":"V. A. Kukareko,&nbsp;M. A. Belotserkovsky,&nbsp;A. N. Grigorchik,&nbsp;A. V. Sosnovskiy","doi":"10.3103/S1068366622050075","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>The structure and properties of a hypersonic coating from a Ti–4Al titanium alloy obtained at various propane pressures have been investigated. It is shown that the sprayed coatings contain from a 50 to 70 vol % TiN phase. It was found that the volume fraction of the nitride layer on the surface of a titanium particle depends on the area of titanium particles and their flight speed during deposition. It is shown that the microhardness of the deposited layers of coatings is 1200–1600 HV 0.025 and the hardness of the coatings is 450–650 HV 10. The difference in hardness and microhardness values is associated with the presence of pure titanium interlayers in the coatings, as well as with high porosity. It has been established that hypersonic coatings made of Ti–4Al alloy are characterized by high wear resistance under dry and boundary friction conditions. In particular, under conditions of dry friction, the wear resistance of coatings is ≈14–16 times higher than the wear resistance of a specimen made of Grade 2 monolithic alloy, and under friction conditions in a lubricant up to ≈240 times. Sputtered coatings of titanium alloys containing the TiN nitride phase can be used as protective and wear-resistant layers on the surfaces of various materials, including titanium. It is concluded that the hypersonic metallization method makes it possible to form economical nitride-based coatings characterized by high microhardness and wear resistance.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366622050075","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The structure and properties of a hypersonic coating from a Ti–4Al titanium alloy obtained at various propane pressures have been investigated. It is shown that the sprayed coatings contain from a 50 to 70 vol % TiN phase. It was found that the volume fraction of the nitride layer on the surface of a titanium particle depends on the area of titanium particles and their flight speed during deposition. It is shown that the microhardness of the deposited layers of coatings is 1200–1600 HV 0.025 and the hardness of the coatings is 450–650 HV 10. The difference in hardness and microhardness values is associated with the presence of pure titanium interlayers in the coatings, as well as with high porosity. It has been established that hypersonic coatings made of Ti–4Al alloy are characterized by high wear resistance under dry and boundary friction conditions. In particular, under conditions of dry friction, the wear resistance of coatings is ≈14–16 times higher than the wear resistance of a specimen made of Grade 2 monolithic alloy, and under friction conditions in a lubricant up to ≈240 times. Sputtered coatings of titanium alloys containing the TiN nitride phase can be used as protective and wear-resistant layers on the surfaces of various materials, including titanium. It is concluded that the hypersonic metallization method makes it possible to form economical nitride-based coatings characterized by high microhardness and wear resistance.

Abstract Image

高超声速金属化制备Ti-TiN涂层的结构与摩擦学性能
摘要研究了在不同丙烷压力下制备的Ti-4Al钛合金高超声速涂层的结构和性能。结果表明,涂层中TiN含量为50 ~ 70 vol %。结果表明,钛颗粒表面氮化层的体积分数取决于钛颗粒的面积和沉积过程中钛颗粒的飞行速度。结果表明:镀层显微硬度为1200 ~ 1600 HV 0.025,镀层硬度为450 ~ 650 HV 10。硬度和显微硬度值的差异与涂层中纯钛夹层的存在以及高孔隙率有关。研究表明,Ti-4Al合金高超声速涂层在干摩擦和边界摩擦条件下具有较高的耐磨性。特别是在干摩擦条件下,涂层的耐磨性比二级整体合金试样的耐磨性高≈14-16倍,在润滑剂摩擦条件下可达≈240倍。含氮化TiN相的钛合金溅射涂层可作为包括钛在内的各种材料表面的保护层和耐磨层。结果表明,高超声速金属化方法使制备具有高显微硬度和耐磨性的经济氮化物基涂层成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Friction and Wear
Journal of Friction and Wear ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
1.50
自引率
28.60%
发文量
21
审稿时长
6-12 weeks
期刊介绍: Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信