{"title":"Improving the causal treatment effect estimation with propensity scores by the bootstrap","authors":"Maeregu W. Arisido, Fulvia Mecatti, Paola Rebora","doi":"10.1007/s10182-021-00427-3","DOIUrl":null,"url":null,"abstract":"<div><p>When observational studies are used to establish the causal effects of treatments, the estimated effect is affected by treatment selection bias. The inverse propensity score weight (IPSW) is often used to deal with such bias. However, IPSW requires strong assumptions whose misspecifications and strategies to correct the misspecifications were rarely studied. We present a bootstrap bias correction of IPSW (BC-IPSW) to improve the performance of propensity score in dealing with treatment selection bias in the presence of failure to the ignorability and overlap assumptions. The approach was motivated by a real observational study to explore the potential of anticoagulant treatment for reducing mortality in patients with end-stage renal disease. The benefit of the treatment to enhance survival was demonstrated; the suggested BC-IPSW method indicated a statistically significant reduction in mortality for patients receiving the treatment. Using extensive simulations, we show that BC-IPSW substantially reduced the bias due to the misspecification of the ignorability and overlap assumptions. Further, we showed that IPSW is still useful to account for the lack of treatment randomization, but its advantages are stringently linked to the satisfaction of ignorability, indicating that the existence of relevant though unmeasured or unused covariates can worsen the selection bias.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-021-00427-3.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-021-00427-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
When observational studies are used to establish the causal effects of treatments, the estimated effect is affected by treatment selection bias. The inverse propensity score weight (IPSW) is often used to deal with such bias. However, IPSW requires strong assumptions whose misspecifications and strategies to correct the misspecifications were rarely studied. We present a bootstrap bias correction of IPSW (BC-IPSW) to improve the performance of propensity score in dealing with treatment selection bias in the presence of failure to the ignorability and overlap assumptions. The approach was motivated by a real observational study to explore the potential of anticoagulant treatment for reducing mortality in patients with end-stage renal disease. The benefit of the treatment to enhance survival was demonstrated; the suggested BC-IPSW method indicated a statistically significant reduction in mortality for patients receiving the treatment. Using extensive simulations, we show that BC-IPSW substantially reduced the bias due to the misspecification of the ignorability and overlap assumptions. Further, we showed that IPSW is still useful to account for the lack of treatment randomization, but its advantages are stringently linked to the satisfaction of ignorability, indicating that the existence of relevant though unmeasured or unused covariates can worsen the selection bias.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.