{"title":"A high-precision and efficient algorithm for space-based ADS-B signal separation","authors":"Yan Bi, R. Wu, Qiongqiong Jia","doi":"10.1017/s0373463323000139","DOIUrl":null,"url":null,"abstract":"\n Space-based automatic dependent surveillance-broadcast (ADS-B) receivers can cover thousands of aircraft, each transmitting 6 ⋅ 2 signals per second. As a result, ADS-B signals are very prone to overlap. When the number of aircraft covered by a receiver reaches 3,000, about 90 % of the signals will be overlapping. Overlapped signals can reduce the decoding accuracy of receivers, so that aircraft information cannot be accurately transmitted to the air traffic control (ATC) surveillance system, hence threatening aviation flight safety. It is necessary to propose signal separation algorithms for space-based ADS-B systems. An orthogonal projection linear constrained minimum variance (OPLCMV) algorithm is proposed, which can separate two signals simultaneously based on the linearly constrained minimum variance algorithm by exploiting the characteristics of overlapped signals. Compared with the state-of-the-art extended projection algorithm and the fast independent component analysis algorithm, the OPLCMV method has a higher decoding accuracy for multiple overlapping signals with a small direction difference of arrival or frequency shift. Moreover, the OPLCMV algorithm has a low computational complexity when the number of overlapped signal sources is less than seven.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0373463323000139","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Space-based automatic dependent surveillance-broadcast (ADS-B) receivers can cover thousands of aircraft, each transmitting 6 ⋅ 2 signals per second. As a result, ADS-B signals are very prone to overlap. When the number of aircraft covered by a receiver reaches 3,000, about 90 % of the signals will be overlapping. Overlapped signals can reduce the decoding accuracy of receivers, so that aircraft information cannot be accurately transmitted to the air traffic control (ATC) surveillance system, hence threatening aviation flight safety. It is necessary to propose signal separation algorithms for space-based ADS-B systems. An orthogonal projection linear constrained minimum variance (OPLCMV) algorithm is proposed, which can separate two signals simultaneously based on the linearly constrained minimum variance algorithm by exploiting the characteristics of overlapped signals. Compared with the state-of-the-art extended projection algorithm and the fast independent component analysis algorithm, the OPLCMV method has a higher decoding accuracy for multiple overlapping signals with a small direction difference of arrival or frequency shift. Moreover, the OPLCMV algorithm has a low computational complexity when the number of overlapped signal sources is less than seven.
期刊介绍:
The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.