Lead isotope evolution during the multi-stage core formation

IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Tong Fang , Jing Huang , Robert E. Zartman
{"title":"Lead isotope evolution during the multi-stage core formation","authors":"Tong Fang ,&nbsp;Jing Huang ,&nbsp;Robert E. Zartman","doi":"10.1016/j.sesci.2021.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>The evolution of the U-Pb decay system is determined by their initial isotopic composition in the proto-Earth and the subsequent global differentiation. The differentiation is highly complicated because of large-scale evaporation and multi-stage core formation in Earth accretion. We statistically rebuild the accretional history of Earth using a series of N-body simulations. This provides us with an estimation of the amount of silicate melting and thus temperature and pressure at the bottom of the magma oceans driven by continuous planetesimal impacts. We further assumed different evolutionary paths of the redox state and found a reduced process from an oxidized state consistent with the current value of Pb content and μ value (<sup>238</sup>U/<sup>204</sup>Pb) in the bulk silicate Earth. Meanwhile, the fraction of the impactor's core that participates in the re-equilibration is around 0.2–0.7. Our model predicts the final μ value equals the observed value, 8.25, regardless of the minor contribution of the late veneer (0.2). The evolution of μ determines the growth rate of radiogenic Pb isotopes. The episodic increase of μ in multi-stage core formation accelerates the growth of radiogenic Pb isotopes (<sup>206</sup>Pb and <sup>207</sup>Pb) and finally causes a slight deviation of the composition of Pb isotopes (<sup>206</sup>Pb/<sup>204</sup>Pb and <sup>207</sup>Pb/<sup>204</sup>Pb) to the right of 4.567-Ga Earth Geochron. A multi-stage evolution model for U–Pb system can explain the modern terrestrial μ value, but has little influence on the puzzle of “the first Pb paradox”.</p></div>","PeriodicalId":54172,"journal":{"name":"Solid Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2451912X2100043X/pdfft?md5=f2500710608402eb8497771481f184fe&pid=1-s2.0-S2451912X2100043X-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451912X2100043X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The evolution of the U-Pb decay system is determined by their initial isotopic composition in the proto-Earth and the subsequent global differentiation. The differentiation is highly complicated because of large-scale evaporation and multi-stage core formation in Earth accretion. We statistically rebuild the accretional history of Earth using a series of N-body simulations. This provides us with an estimation of the amount of silicate melting and thus temperature and pressure at the bottom of the magma oceans driven by continuous planetesimal impacts. We further assumed different evolutionary paths of the redox state and found a reduced process from an oxidized state consistent with the current value of Pb content and μ value (238U/204Pb) in the bulk silicate Earth. Meanwhile, the fraction of the impactor's core that participates in the re-equilibration is around 0.2–0.7. Our model predicts the final μ value equals the observed value, 8.25, regardless of the minor contribution of the late veneer (0.2). The evolution of μ determines the growth rate of radiogenic Pb isotopes. The episodic increase of μ in multi-stage core formation accelerates the growth of radiogenic Pb isotopes (206Pb and 207Pb) and finally causes a slight deviation of the composition of Pb isotopes (206Pb/204Pb and 207Pb/204Pb) to the right of 4.567-Ga Earth Geochron. A multi-stage evolution model for U–Pb system can explain the modern terrestrial μ value, but has little influence on the puzzle of “the first Pb paradox”.

多阶段岩心形成过程中铅同位素演化
U-Pb衰变系统的演化是由它们在原地球的初始同位素组成和随后的全球分异决定的。由于地球吸积过程中大规模蒸发和多阶段岩心形成,分异非常复杂。我们用一系列的n体模拟重建了地球的吸积历史。这为我们提供了硅酸盐融化量的估计,从而在岩浆海洋底部的温度和压力是由持续的小行星撞击驱动的。我们进一步假设了氧化还原态的不同演化路径,发现了一个与块状硅酸盐土中Pb含量和μ值(238U/204Pb)的电流值一致的氧化态还原过程。同时,撞击器核心参与再平衡的比例约为0.2-0.7。我们的模型预测最终μ值等于观测值8.25,而不考虑后期贴面的微小贡献(0.2)。μ的演化决定了放射性成因Pb同位素的生长速率。多期岩心地层中μ的偶发性增加加速了放射性成因Pb同位素(206Pb和207Pb)的增长,最终导致Pb同位素(206Pb/204Pb和207Pb/204Pb)组成向4.567 ga地球地质年代线右侧偏移。U-Pb系统的多阶段演化模型可以解释现代地球μ值,但对“第一Pb悖论”的困惑影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid Earth Sciences
Solid Earth Sciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
5.00%
发文量
20
审稿时长
103 days
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信