Computational study of intravenous magnetic drug targeting using implanted magnetizable stent

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
A. Krafčík, M. Babincová, P. Babinec, I. Frollo
{"title":"Computational study of intravenous magnetic drug targeting using implanted magnetizable stent","authors":"A. Krafčík, M. Babincová, P. Babinec, I. Frollo","doi":"10.1515/ijnsns-2019-0200","DOIUrl":null,"url":null,"abstract":"Abstract Magnetic carriers for guiding, delivery, and capturing of drugs to desired place attract interest in the field of smart treatment of various pathological conditions. Presented paper, therefore, deals with one such application with the theoretical model of magnetic fluid flow through vessel bifurcation with one arm treated with ferromagnetic vascular stent placed in an external originally homogeneous magnetic field. This flow was described as laminar Newtonian incompressible continuum of the magnetic many-bead system, with Reynolds number ≈ 1 $\\approx 1$ , using magnetic force variant of the Nernst–Planck equation coupled with the Navier–Stokes equations, solved numerically by the finite element method (FEM). This approach allowed us to quantify capturing efficiency of magnetic beads in each arm of bifurcation vessels. Results show reduction of the number of magnetic beads entering as well as leaving the arm treated with stent in comparison with the untreated one. For stented bifurcation arm, the significant amount of beads are captured to its luminal surface, which may be used for drug delivery using magnetic carriers.","PeriodicalId":50304,"journal":{"name":"International Journal of Nonlinear Sciences and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nonlinear Sciences and Numerical Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijnsns-2019-0200","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Magnetic carriers for guiding, delivery, and capturing of drugs to desired place attract interest in the field of smart treatment of various pathological conditions. Presented paper, therefore, deals with one such application with the theoretical model of magnetic fluid flow through vessel bifurcation with one arm treated with ferromagnetic vascular stent placed in an external originally homogeneous magnetic field. This flow was described as laminar Newtonian incompressible continuum of the magnetic many-bead system, with Reynolds number ≈ 1 $\approx 1$ , using magnetic force variant of the Nernst–Planck equation coupled with the Navier–Stokes equations, solved numerically by the finite element method (FEM). This approach allowed us to quantify capturing efficiency of magnetic beads in each arm of bifurcation vessels. Results show reduction of the number of magnetic beads entering as well as leaving the arm treated with stent in comparison with the untreated one. For stented bifurcation arm, the significant amount of beads are captured to its luminal surface, which may be used for drug delivery using magnetic carriers.
植入磁化支架静脉磁性药物靶向的计算研究
磁性载体用于引导、递送和捕获药物到所需位置,在各种病理条件的智能治疗领域引起了人们的兴趣。因此,本文讨论了一个这样的应用,即磁性流体通过血管分叉的理论模型,其中一只手臂被放置在原本均匀的外部磁场中的铁磁性血管支架处理。利用磁力型的Nernst-Planck方程与Navier-Stokes方程耦合,用有限元法对该流进行数值求解,将其描述为雷诺数≈1$ \近似1$的磁性多磁头系统的层流牛顿不可压缩连续体。这种方法使我们能够量化磁珠在分岔血管的每个臂中的捕获效率。结果显示,与未接受支架治疗的手臂相比,接受支架治疗的手臂进入和离开的磁珠数量减少。对于支架分叉臂,大量的微珠被捕获到其管腔表面,这可能用于使用磁性载体给药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
6.70%
发文量
117
审稿时长
13.7 months
期刊介绍: The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at Researchers in Nonlinear Sciences, Engineers, and Computational Scientists, Economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信