S. Zinchenko, Oleh Tovstokoryi, V. Mateichuk, P. Nosov, I. S. Popovych, I. Gritsuk
{"title":"Automatic Vessel Steering in a Storm","authors":"S. Zinchenko, Oleh Tovstokoryi, V. Mateichuk, P. Nosov, I. S. Popovych, I. Gritsuk","doi":"10.2478/ecce-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract The issues of automatic vessel control in a storm are considered in the paper. Vessel control in a storm is the most difficult stage in the vessel’s wiring, as it requires quick decisions to be made in difficult conditions. Practical experience shows that the deterioration of the working conditions of the crew is usually associated with an increase in the number of control errors, which is completely unacceptable in stormy conditions. To assess the safe speed and course in a storm, Yu. V. Remez has proposed a universal storm diagram, which allows identifying unfavourable combinations of vessel speed and course angles of the waves – the resonant zones, and avoid them. The universal Remez diagram provides for graphical calculations, which, in combination with the visual determination of the wave parameters, gives a very low accuracy. The article examines the possibility of automatic control of a vessel in a storm by automatic measurement of motion parameters and wave parameters, automatic calculation in the onboard controller of the vessel optimal safe speed and course during a storm, automatic maintenance of the optimal safe speed and course of the vessel. The automatic control significantly increases the accuracy of calculations, excludes the human factor, reduces the depletion of the crew, and increases the reliability of the vessel control in a storm. The efficiency and effectiveness of the method, algorithmic and software were tested on Imitation Modelling Stand in a closed loop with mathematical vessel models of the navigation simulator Navi Trainer 5000.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"18 1","pages":"66 - 74"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ecce-2022-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The issues of automatic vessel control in a storm are considered in the paper. Vessel control in a storm is the most difficult stage in the vessel’s wiring, as it requires quick decisions to be made in difficult conditions. Practical experience shows that the deterioration of the working conditions of the crew is usually associated with an increase in the number of control errors, which is completely unacceptable in stormy conditions. To assess the safe speed and course in a storm, Yu. V. Remez has proposed a universal storm diagram, which allows identifying unfavourable combinations of vessel speed and course angles of the waves – the resonant zones, and avoid them. The universal Remez diagram provides for graphical calculations, which, in combination with the visual determination of the wave parameters, gives a very low accuracy. The article examines the possibility of automatic control of a vessel in a storm by automatic measurement of motion parameters and wave parameters, automatic calculation in the onboard controller of the vessel optimal safe speed and course during a storm, automatic maintenance of the optimal safe speed and course of the vessel. The automatic control significantly increases the accuracy of calculations, excludes the human factor, reduces the depletion of the crew, and increases the reliability of the vessel control in a storm. The efficiency and effectiveness of the method, algorithmic and software were tested on Imitation Modelling Stand in a closed loop with mathematical vessel models of the navigation simulator Navi Trainer 5000.