Atiyah-Segal theorem for Deligne-Mumford stacks and applications

IF 0.9 1区 数学 Q2 MATHEMATICS
A. Krishna, Bhamidi Sreedhar
{"title":"Atiyah-Segal theorem for Deligne-Mumford stacks and applications","authors":"A. Krishna, Bhamidi Sreedhar","doi":"10.1090/jag/755","DOIUrl":null,"url":null,"abstract":"We prove an Atiyah-Segal isomorphism for the higher \n\n \n K\n K\n \n\n-theory of coherent sheaves on quotient Deligne-Mumford stacks over \n\n \n \n C\n \n \\mathbb {C}\n \n\n. As an application, we prove the Grothendieck-Riemann-Roch theorem for such stacks. This theorem establishes an isomorphism between the higher \n\n \n K\n K\n \n\n-theory of coherent sheaves on a Deligne-Mumford stack and the higher Chow groups of its inertia stack. Furthermore, this isomorphism is covariant for proper maps between Deligne-Mumford stacks.","PeriodicalId":54887,"journal":{"name":"Journal of Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2017-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jag/755","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jag/755","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We prove an Atiyah-Segal isomorphism for the higher K K -theory of coherent sheaves on quotient Deligne-Mumford stacks over C \mathbb {C} . As an application, we prove the Grothendieck-Riemann-Roch theorem for such stacks. This theorem establishes an isomorphism between the higher K K -theory of coherent sheaves on a Deligne-Mumford stack and the higher Chow groups of its inertia stack. Furthermore, this isomorphism is covariant for proper maps between Deligne-Mumford stacks.
Deligne-Mumford堆栈的Atiya-Segal定理及其应用
我们证明了C\mathbb{C}上商Deligne-Mumford堆栈上相干槽轮的高K-理论的Atiyah-Segal同构。作为一个应用,我们证明了这类堆栈的Grothendieck-Riemann-Roch定理。该定理建立了Deligne-Mumford堆栈上相干槽轮的高K-理论与其惯性堆栈的高Chow群之间的同构。此外,对于Deligne-Mumford堆栈之间的适当映射,这种同构是协变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
5.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Algebraic Geometry is devoted to research articles in algebraic geometry, singularity theory, and related subjects such as number theory, commutative algebra, projective geometry, complex geometry, and geometric topology. This journal, published quarterly with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信