SPSA Algorithm for Matching of Historical Data for Complex Non-Gaussian Geological Models

Q3 Physics and Astronomy
Vikentii Pankov, O. Granichin
{"title":"SPSA Algorithm for Matching of Historical Data for Complex Non-Gaussian Geological Models","authors":"Vikentii Pankov, O. Granichin","doi":"10.35470/2226-4116-2022-11-1-18-24","DOIUrl":null,"url":null,"abstract":"History matching is the process of integrating dynamic production data in the reservoir model. It consists in estimation of uncertain model parameters such that oil or water production data from flow simulation become close to observed dynamic data. Various optimization methods can be used to estimate the model parameters. Simultaneous perturbation stochastic approximation (SPSA) is one of the stochastic approximation algorithms. It requires only two objective function measurements for gradient approximation per iteration. Also parameters estimated by this algorithm might converge to their true values under arbitrary bounded additive noise, while many other optimization algorithms require the noise to have zero mean. SPSA algorithm has not been well explored for history matching problems and has been applied only to simple Gaussian models. In this paper, we applied SPSA to history matching of binary channelized reservoir models. We also used SPSA in combination with parameterization method CNN-PCA. And we considered the case of complex noise in observed production data and with objective function that does not require assumptions of normality of the observations, which is common in history matching literature. We experimentally showed that SPSA method can be successfully used for history matching\nof non-Gaussian geological models with different types of noise in observations and outperforms Particle Swarm Optimization by convergence speed.","PeriodicalId":37674,"journal":{"name":"Cybernetics and Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35470/2226-4116-2022-11-1-18-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

History matching is the process of integrating dynamic production data in the reservoir model. It consists in estimation of uncertain model parameters such that oil or water production data from flow simulation become close to observed dynamic data. Various optimization methods can be used to estimate the model parameters. Simultaneous perturbation stochastic approximation (SPSA) is one of the stochastic approximation algorithms. It requires only two objective function measurements for gradient approximation per iteration. Also parameters estimated by this algorithm might converge to their true values under arbitrary bounded additive noise, while many other optimization algorithms require the noise to have zero mean. SPSA algorithm has not been well explored for history matching problems and has been applied only to simple Gaussian models. In this paper, we applied SPSA to history matching of binary channelized reservoir models. We also used SPSA in combination with parameterization method CNN-PCA. And we considered the case of complex noise in observed production data and with objective function that does not require assumptions of normality of the observations, which is common in history matching literature. We experimentally showed that SPSA method can be successfully used for history matching of non-Gaussian geological models with different types of noise in observations and outperforms Particle Swarm Optimization by convergence speed.
复杂非高斯地质模型历史数据匹配的SPSA算法
历史拟合是将动态生产数据整合到油藏模型中的过程。它包括对不确定模型参数的估计,使从流动模拟得到的产油或产水数据接近于观测到的动态数据。可以使用各种优化方法来估计模型参数。同步摄动随机逼近(SPSA)是随机逼近算法中的一种。每次迭代只需要两次梯度逼近的目标函数测量。此外,该算法估计的参数在任意有界加性噪声下可能收敛于其真值,而许多其他优化算法要求噪声均值为零。SPSA算法在历史匹配问题上还没有得到很好的研究,目前只应用于简单的高斯模型。本文将SPSA应用于二元水道化储层模型的历史拟合。我们还将SPSA与参数化方法CNN-PCA相结合。我们考虑了观察到的生产数据中存在复杂噪声的情况,并且目标函数不需要假设观测的正态性,这在历史匹配文献中很常见。实验表明,SPSA方法可以成功地用于具有不同类型观测噪声的非高斯地质模型的历史匹配,并且在收敛速度上优于粒子群算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cybernetics and Physics
Cybernetics and Physics Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊介绍: The scope of the journal includes: -Nonlinear dynamics and control -Complexity and self-organization -Control of oscillations -Control of chaos and bifurcations -Control in thermodynamics -Control of flows and turbulence -Information Physics -Cyber-physical systems -Modeling and identification of physical systems -Quantum information and control -Analysis and control of complex networks -Synchronization of systems and networks -Control of mechanical and micromechanical systems -Dynamics and control of plasma, beams, lasers, nanostructures -Applications of cybernetic methods in chemistry, biology, other natural sciences The papers in cybernetics with physical flavor as well as the papers in physics with cybernetic flavor are welcome. Cybernetics is assumed to include, in addition to control, such areas as estimation, filtering, optimization, identification, information theory, pattern recognition and other related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信