{"title":"IoT-Inspired Smart Toilet System for Home-Based Urine Infection Prediction","authors":"Munish Bhatia, Simranpreet Kaur, S. Sood","doi":"10.1145/3379506","DOIUrl":null,"url":null,"abstract":"The healthcare industry is the premier domain that has been significantly influenced by incorporation of Internet of Things (IoT) technology resulting in smart healthcare application. Inspired by the enormous potential of IoT technology, this research provides a framework for an IoT-based smart toilet system, which enables home-based determination of Urinary Infection (UI) efficaciously. The overall system comprises a four-layered architecture for monitoring and predicting infection in urine. The layers include the Urine Acquisition, Urine Analyzation, Temporal Extraction, and Temporal Prediction layers, which enable an individual to monitor his or her health on daily basis and predict UI so that precautionary measures can be taken at early stages. Moreover, probabilistic quantification of urine infection in the form of Degree of Infectiousness (DoI) and Infection Index Value (IIV) were performed for infection prediction based on a temporal Artificial Neural Network. In addition, the presence of UI is displayed to the user based on a Self-Organized Mapping technique. For validation purposes, numerous experimental simulations were performed on four individuals for 60 days. Results were compared with different state-of-the-art techniques for measuring the overall efficiency of the proposed system.","PeriodicalId":72043,"journal":{"name":"ACM transactions on computing for healthcare","volume":" ","pages":"1 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3379506","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on computing for healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
The healthcare industry is the premier domain that has been significantly influenced by incorporation of Internet of Things (IoT) technology resulting in smart healthcare application. Inspired by the enormous potential of IoT technology, this research provides a framework for an IoT-based smart toilet system, which enables home-based determination of Urinary Infection (UI) efficaciously. The overall system comprises a four-layered architecture for monitoring and predicting infection in urine. The layers include the Urine Acquisition, Urine Analyzation, Temporal Extraction, and Temporal Prediction layers, which enable an individual to monitor his or her health on daily basis and predict UI so that precautionary measures can be taken at early stages. Moreover, probabilistic quantification of urine infection in the form of Degree of Infectiousness (DoI) and Infection Index Value (IIV) were performed for infection prediction based on a temporal Artificial Neural Network. In addition, the presence of UI is displayed to the user based on a Self-Organized Mapping technique. For validation purposes, numerous experimental simulations were performed on four individuals for 60 days. Results were compared with different state-of-the-art techniques for measuring the overall efficiency of the proposed system.