A Model of Interaction Between Apocynin and NADPH Oxidase Enzyme to Analyze the Possible Targets Responsible for Inhibition by Computational Analysis

IF 2.5 Q3 CELL BIOLOGY
Vaibhav Gandhi, Ishan Wadi, T. Gupta, Divya Jindal, Pranav Pancham, Ashok Tiwari, S. Jha, R. Tiwari, Silpi Chanda, Chakresh Kumar, Jain, Manisha Singh
{"title":"A Model of Interaction Between Apocynin and NADPH Oxidase Enzyme to Analyze the Possible Targets Responsible for Inhibition by Computational Analysis","authors":"Vaibhav Gandhi, Ishan Wadi, T. Gupta, Divya Jindal, Pranav Pancham, Ashok Tiwari, S. Jha, R. Tiwari, Silpi Chanda, Chakresh Kumar, Jain, Manisha Singh","doi":"10.33594/000000632","DOIUrl":null,"url":null,"abstract":"Background/Aims: A multi-component enzyme system called NADPH oxidase (NOX) helps innate immunity by generating reactive oxygen species (ROS). NOX hyperactivation has been associated w several diseases. This enzyme is a membrane-bound complex made up of six subunits when it is active. These enzymatic subunits are considered to be potent inhibitors of enzyme activity and good targets for reducing oxidative stress. Methods: The present study aimed to analyze the possible targets: the different subunits of NOX, for their interactions with apocynin to identify its possible mechanism of inhibition for NOX, using in silico tools. Monomer, dimer, and trimer of apocynin were docked to various subunits of NOX. Results: Comparable glide scores were obtained when the monomer and dimer of apocynin were docked with p47phox complete subunit of NOX and were better than in comparison to trimer. Free Energy of Binding (FEB) was highest in the case of the trimer (-37.4 Kcal/mol), followed by the dimer (-21.2 Kcal/mol) and monomer (-18.2 Kcal/mol). Dimer obtained the highest glide score of 8.25 (FEB =-25.1 Kcal/mol) with p67phox-isoform 2. The PH domain of p47phox and the SH3 domain of p67phox have their own best binding energy with dimmer. While molecular docking with Rac-Zn-GD, P, dimer, and trimer have shown comparable FEB. The residues, on which the ligands were found to interact, were of major significance being present in those domains that vicinity to inhibit or activate the complex and are important for the protein structure and functioning. MDS studies have confirmed the findings that the Apocynin trimer molecule has superior stability and interactions with the enzyme complex. Conclusion: It can be concluded from the study that trimer and dimer have better interactions in terms of FEB with p67phox and p47phox, indicating the reported findings in the literature.","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Aims: A multi-component enzyme system called NADPH oxidase (NOX) helps innate immunity by generating reactive oxygen species (ROS). NOX hyperactivation has been associated w several diseases. This enzyme is a membrane-bound complex made up of six subunits when it is active. These enzymatic subunits are considered to be potent inhibitors of enzyme activity and good targets for reducing oxidative stress. Methods: The present study aimed to analyze the possible targets: the different subunits of NOX, for their interactions with apocynin to identify its possible mechanism of inhibition for NOX, using in silico tools. Monomer, dimer, and trimer of apocynin were docked to various subunits of NOX. Results: Comparable glide scores were obtained when the monomer and dimer of apocynin were docked with p47phox complete subunit of NOX and were better than in comparison to trimer. Free Energy of Binding (FEB) was highest in the case of the trimer (-37.4 Kcal/mol), followed by the dimer (-21.2 Kcal/mol) and monomer (-18.2 Kcal/mol). Dimer obtained the highest glide score of 8.25 (FEB =-25.1 Kcal/mol) with p67phox-isoform 2. The PH domain of p47phox and the SH3 domain of p67phox have their own best binding energy with dimmer. While molecular docking with Rac-Zn-GD, P, dimer, and trimer have shown comparable FEB. The residues, on which the ligands were found to interact, were of major significance being present in those domains that vicinity to inhibit or activate the complex and are important for the protein structure and functioning. MDS studies have confirmed the findings that the Apocynin trimer molecule has superior stability and interactions with the enzyme complex. Conclusion: It can be concluded from the study that trimer and dimer have better interactions in terms of FEB with p67phox and p47phox, indicating the reported findings in the literature.
一个罗布麻苷与NADPH氧化酶相互作用的模型,通过计算分析来分析可能的抑制目标
背景/目的:一种名为NADPH氧化酶(NOX)的多组分酶系统通过产生活性氧(ROS)来帮助先天免疫。NOX过度活化与多种疾病有关。这种酶是一种膜结合的复合物,在活性时由六个亚基组成。这些酶亚基被认为是酶活性的有效抑制剂和减少氧化应激的良好靶点。方法:本研究旨在使用计算机工具分析可能的靶标:NOX的不同亚基,以及它们与罗布麻素的相互作用,以确定其对NOX的可能抑制机制。罗布麻素的单体、二聚体和三聚体与NOX的不同亚基对接。结果:当罗布麻素的单体和二聚体与NOX的p47phox完全亚基对接时,获得了可比较的滑动得分,并且比三聚体更好。在三聚体(-37.4Kcal/mol)的情况下,结合自由能(FEB)最高,其次是二聚体(-21.2Kcal/mmol)和单体(-18.2Kcal/mmol)。二聚体与p67phox同种型2的滑翔得分最高,为8.25(FEB=-25.1Kcal/mol)。p47phox的PH结构域和p67phox的SH3结构域具有各自的最佳结合能和二聚体。虽然与Rac-Zn-GD、P、二聚体和三聚体的分子对接显示出相当的FEB。发现配体在其上相互作用的残基存在于那些邻近的结构域中,具有抑制或激活复合物的重要意义,并且对蛋白质结构和功能很重要。MDS研究证实了夹竹桃素三聚体分子具有优异的稳定性以及与酶复合物的相互作用。结论:从研究中可以得出结论,三聚体和二聚体在FEB方面与p67phox和p47phox具有更好的相互作用,表明了文献中报道的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
86
审稿时长
1 months
期刊介绍: Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信