{"title":"Effectual seizure detection using MBBF-GPSO with CNN network.","authors":"Dinesh Kumar Atal, Mukhtiar Singh","doi":"10.1007/s11571-023-09943-1","DOIUrl":null,"url":null,"abstract":"<p><p>EEG is the most common test for diagnosing a seizure, where it presents information about the electrical activity of the brain. Automatic Seizure detection is one of the challenging tasks due to limitations of conventional methods with regard to inefficient feature selection, increased computational complexity and time and less accuracy. The situation calls for a practical framework to achieve better performance for detecting the seizure effectively. Hence, this study proposes modified Blackman bandpass filter-greedy particle swarm optimization (MBBF-GPSO) with convolutional neural network (CNN) for effective seizure detection. In this case, unwanted signals (noise) is eliminated by MBBF as it possess better ability in stopband attenuation, and, only the optimized features are selected using GPSO. For enhancing the efficacy of obtaining optimal solutions in GPSO, the time and frequency domain is extracted to complement it. Through this process, an optimized features are attained by MBBF-GPSO. Then, the CNN layer is employed for obtaining the productive classification output using the objective function. Here, CNN is employed due to its ability in automatically learning distinct features for individual class. Such advantages of the proposed system have made it explore better performance in seizure detection that is confirmed through performance and comparative analysis.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09943-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
EEG is the most common test for diagnosing a seizure, where it presents information about the electrical activity of the brain. Automatic Seizure detection is one of the challenging tasks due to limitations of conventional methods with regard to inefficient feature selection, increased computational complexity and time and less accuracy. The situation calls for a practical framework to achieve better performance for detecting the seizure effectively. Hence, this study proposes modified Blackman bandpass filter-greedy particle swarm optimization (MBBF-GPSO) with convolutional neural network (CNN) for effective seizure detection. In this case, unwanted signals (noise) is eliminated by MBBF as it possess better ability in stopband attenuation, and, only the optimized features are selected using GPSO. For enhancing the efficacy of obtaining optimal solutions in GPSO, the time and frequency domain is extracted to complement it. Through this process, an optimized features are attained by MBBF-GPSO. Then, the CNN layer is employed for obtaining the productive classification output using the objective function. Here, CNN is employed due to its ability in automatically learning distinct features for individual class. Such advantages of the proposed system have made it explore better performance in seizure detection that is confirmed through performance and comparative analysis.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.