W. Hassen, A. Ben Rejab, B. Hassen, N. Jdidi, A. Hassen
{"title":"Investigation of a basic nitrification–denitrification biofiltration system for primary wastewater treatment","authors":"W. Hassen, A. Ben Rejab, B. Hassen, N. Jdidi, A. Hassen","doi":"10.2166/wqrj.2023.103","DOIUrl":null,"url":null,"abstract":"\n \n The study aimed to eliminate the nitrogen and its main residual forms from municipal wastewater by using a biofilter system adapted for a small community. The biological nitrification/denitrification system used involved two successive PVC columns; a first gravel column (C1) loaded with primary wastewater followed by a second sandy column (C2). A complex biofilm development on the gravel and sand materials has been confirmed by scanning electron microscope. The efficiency of chemical oxygen demand (COD), BOD5, TSS, and NH4+-N removal from primary wastewater reached 75.3, 88.4, 83.5, and 88.1%, respectively, at the exit of the sandy column (C2). Inoculation with activated sludge as an external carbon source allowed an improvement in the nitrate removal, from 80 to 28 mg/l N-NO3. However, sludge inoculation showed non-significant fecal coliforms and Streptococcus contamination, and the biofilter appeared as effective for total nitrogen removal and a bacterial abatement of over 3.2 U-log10. The average bacterial removal seemed directly related to the applied load of about 50 cm/day and a tertiary disinfection treatment, such as UV-C254 irradiation, is needed as a preventive step to ensure the removal of pathogens.","PeriodicalId":23720,"journal":{"name":"Water Quality Research Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wqrj.2023.103","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
The study aimed to eliminate the nitrogen and its main residual forms from municipal wastewater by using a biofilter system adapted for a small community. The biological nitrification/denitrification system used involved two successive PVC columns; a first gravel column (C1) loaded with primary wastewater followed by a second sandy column (C2). A complex biofilm development on the gravel and sand materials has been confirmed by scanning electron microscope. The efficiency of chemical oxygen demand (COD), BOD5, TSS, and NH4+-N removal from primary wastewater reached 75.3, 88.4, 83.5, and 88.1%, respectively, at the exit of the sandy column (C2). Inoculation with activated sludge as an external carbon source allowed an improvement in the nitrate removal, from 80 to 28 mg/l N-NO3. However, sludge inoculation showed non-significant fecal coliforms and Streptococcus contamination, and the biofilter appeared as effective for total nitrogen removal and a bacterial abatement of over 3.2 U-log10. The average bacterial removal seemed directly related to the applied load of about 50 cm/day and a tertiary disinfection treatment, such as UV-C254 irradiation, is needed as a preventive step to ensure the removal of pathogens.