High-performance piezoelectric yarns for artificial intelligence-enabled wearable sensing and classification

IF 10.7 Q1 CHEMISTRY, PHYSICAL
EcoMat Pub Date : 2023-06-13 DOI:10.1002/eom2.12384
Dabin Kim, Ziyue Yang, Jaewon Cho, Donggeun Park, Dong Hwi Kim, Jinkee Lee, Seunghwa Ryu, Sang-Woo Kim, Miso Kim
{"title":"High-performance piezoelectric yarns for artificial intelligence-enabled wearable sensing and classification","authors":"Dabin Kim,&nbsp;Ziyue Yang,&nbsp;Jaewon Cho,&nbsp;Donggeun Park,&nbsp;Dong Hwi Kim,&nbsp;Jinkee Lee,&nbsp;Seunghwa Ryu,&nbsp;Sang-Woo Kim,&nbsp;Miso Kim","doi":"10.1002/eom2.12384","DOIUrl":null,"url":null,"abstract":"<p>Piezoelectric polymer fibers offer a fundamental element in intelligent fabrics with their shape adaptability and energy-conversion capability for wearable activity and health monitoring applications. Nonetheless, realizing high-performance smart polymer fibers faces a technical challenge due to the relatively low piezoelectric performance. Here, we demonstrate high-performance piezoelectric yarns simultaneously equipped with structural robustness and mechanical flexibility. The key to substantially enhanced piezoelectric performance is promoting the electroactive β-phase formation during electrospinning via adding an adequate amount of barium titanate (BaTiO<sub>3</sub>) nanoparticles into the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). When transformed into a yarn structure by twisting the electrospun mats, the BaTiO<sub>3</sub>-doped P(VDF-TrFE) fibers become mechanically strengthened with significantly improved elastic modulus and ductility. Owing to the tailored convolution neural network algorithms architected for classification, the as-developed BaTiO<sub>3</sub>-doped piezo-yarn device woven into a cotton fabric exhibits monitoring and identifying capabilities for body signals during seven human motion activities with a high accuracy of 99.6%.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 8","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12384","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7

Abstract

Piezoelectric polymer fibers offer a fundamental element in intelligent fabrics with their shape adaptability and energy-conversion capability for wearable activity and health monitoring applications. Nonetheless, realizing high-performance smart polymer fibers faces a technical challenge due to the relatively low piezoelectric performance. Here, we demonstrate high-performance piezoelectric yarns simultaneously equipped with structural robustness and mechanical flexibility. The key to substantially enhanced piezoelectric performance is promoting the electroactive β-phase formation during electrospinning via adding an adequate amount of barium titanate (BaTiO3) nanoparticles into the poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). When transformed into a yarn structure by twisting the electrospun mats, the BaTiO3-doped P(VDF-TrFE) fibers become mechanically strengthened with significantly improved elastic modulus and ductility. Owing to the tailored convolution neural network algorithms architected for classification, the as-developed BaTiO3-doped piezo-yarn device woven into a cotton fabric exhibits monitoring and identifying capabilities for body signals during seven human motion activities with a high accuracy of 99.6%.

Abstract Image

用于人工智能可穿戴传感和分类的高性能压电纱线
压电聚合物纤维以其形状适应性和能量转换能力为可穿戴活动和健康监测应用提供了智能织物的基本元素。然而,由于压电性能相对较低,实现高性能智能聚合物纤维面临着技术挑战。在这里,我们展示了同时具有结构坚固性和机械柔韧性的高性能压电纱线。通过在聚偏氟乙烯-三氟乙烯(P(VDF-TrFE))中加入适量的钛酸钡(BaTiO3)纳米颗粒,促进电活性β相的形成,是显著提高压电性能的关键。通过扭转电纺丝垫,将掺batio3的P(VDF-TrFE)纤维转变成纱线结构,使其机械增强,弹性模量和延展性显著提高。基于定制的卷积神经网络分类算法,研制的batio3掺杂压电纱织成棉织物,具有对人体七种运动活动中身体信号的监测和识别能力,准确率高达99.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信