Identification of Dof Transcription Factors in the Genome of Rosa chinensis

IF 1.2 4区 农林科学 Q3 HORTICULTURE
Jinzhu Zhang, Yu Mo, Shuai Chen, Caihua Li, Qingxi Fang, Jie Dong, Zhongsheng Mou, Zheyu Zhang, D. Che, Qingshan Chen
{"title":"Identification of Dof Transcription Factors in the Genome of Rosa chinensis","authors":"Jinzhu Zhang, Yu Mo, Shuai Chen, Caihua Li, Qingxi Fang, Jie Dong, Zhongsheng Mou, Zheyu Zhang, D. Che, Qingshan Chen","doi":"10.21273/jashs05150-21","DOIUrl":null,"url":null,"abstract":"The DNA binding with one finger (Dof), as an important transcription factor, plays an important role in growth and development, primary and secondary metabolism, stress resistance, and plant hormone signal transduction. However, the identification and analysis of the Dof transcription factor family in Rosa is rarely reported. In this study, 28 Rosa chinensis Dof (RcDof) members were identified, which were located on seven chromosomes. The RcDofs were divided into 12 subfamilies according to evolutionary analysis. Through motif, gene structure, and cis-acting element analyses of the 12 subfamilies, the functions of RcDofs were analyzed and predicted. Furthermore, the Dof members in R. chinensis ‘Old Blush’ and another three species (Arabidopsis thaliana, Oryza sativa, and Zea mays) were systematically analyzed. Twelve subfamilies were found in these four species and the motifs and gene structures of Dof members in each subfamily were similar, which further proves that the RcDofs analysis is accurate. Through an intra- and interspecies collinearity analysis, it was found that the collinearity between A. thaliana and R. chinensis is closer in comparison. Tissue expression analysis of RcDofs was by quantitative reverse-transcription polymerase chain reaction (PCR). Quantitative real-time PCR analysis showed expressions of the RcDofs are tissue specific. The RcDofs had higher expression in leaves, roots, and flowers than other tissues. Taken together, this study provides valuable information for future research on functional exploration of RcDof genes and molecular breeding in Rosa.","PeriodicalId":17226,"journal":{"name":"Journal of the American Society for Horticultural Science","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Horticultural Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/jashs05150-21","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The DNA binding with one finger (Dof), as an important transcription factor, plays an important role in growth and development, primary and secondary metabolism, stress resistance, and plant hormone signal transduction. However, the identification and analysis of the Dof transcription factor family in Rosa is rarely reported. In this study, 28 Rosa chinensis Dof (RcDof) members were identified, which were located on seven chromosomes. The RcDofs were divided into 12 subfamilies according to evolutionary analysis. Through motif, gene structure, and cis-acting element analyses of the 12 subfamilies, the functions of RcDofs were analyzed and predicted. Furthermore, the Dof members in R. chinensis ‘Old Blush’ and another three species (Arabidopsis thaliana, Oryza sativa, and Zea mays) were systematically analyzed. Twelve subfamilies were found in these four species and the motifs and gene structures of Dof members in each subfamily were similar, which further proves that the RcDofs analysis is accurate. Through an intra- and interspecies collinearity analysis, it was found that the collinearity between A. thaliana and R. chinensis is closer in comparison. Tissue expression analysis of RcDofs was by quantitative reverse-transcription polymerase chain reaction (PCR). Quantitative real-time PCR analysis showed expressions of the RcDofs are tissue specific. The RcDofs had higher expression in leaves, roots, and flowers than other tissues. Taken together, this study provides valuable information for future research on functional exploration of RcDof genes and molecular breeding in Rosa.
中国蔷薇基因组Dof转录因子的鉴定
DNA单指结合(DNA binding with one finger, Dof)作为一种重要的转录因子,在植物的生长发育、初级和次级代谢、抗逆性以及激素信号转导等方面发挥着重要作用。然而,Rosa中Dof转录因子家族的鉴定和分析报道较少。本研究鉴定了28个位于7条染色体上的月果(Rosa chinensis Dof, RcDof)成员。根据进化分析,rcdfs可分为12个亚科。通过对12个亚家族的基序、基因结构和顺式作用元件的分析,对RcDofs的功能进行了分析和预测。此外,还系统分析了r.c chinensis ' Old Blush '和另外3个物种(拟南芥,Oryza sativa和Zea mays)的Dof成员。在这4个物种中发现了12个亚科,每个亚科Dof成员的基序和基因结构相似,进一步证明了rcdof分析的准确性。通过种内共线性和种间共线性分析,发现拟南芥与中华r.c inensis的共线性比较接近。采用定量反转录聚合酶链反应(PCR)分析RcDofs的组织表达。实时荧光定量PCR分析显示,rcdof的表达具有组织特异性。RcDofs在叶片、根和花中的表达量高于其他组织。本研究为今后玫瑰RcDof基因的功能探索和分子育种研究提供了有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
31
审稿时长
2 months
期刊介绍: The Journal of the American Society for Horticultural Science publishes papers on the results of original research on horticultural plants and their products or directly related research areas. Its prime function is to communicate mission-oriented, fundamental research to other researchers. The journal includes detailed reports of original research results on various aspects of horticultural science and directly related subjects such as: - Biotechnology - Developmental Physiology - Environmental Stress Physiology - Genetics and Breeding - Photosynthesis, Sources-Sink Physiology - Postharvest Biology - Seed Physiology - Postharvest Biology - Seed Physiology - Soil-Plant-Water Relationships - Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信