Some topological indices of dendrimers determined by their Banhatti polynomials

IF 1.3 3区 化学 Q3 CHEMISTRY, ORGANIC
Zheng-Qing Chu, M. Salman, Asia Munir, Imran Khalid, M. U. Rehman, Jia-bao Liu, Faisal Ali
{"title":"Some topological indices of dendrimers determined by their Banhatti polynomials","authors":"Zheng-Qing Chu, M. Salman, Asia Munir, Imran Khalid, M. U. Rehman, Jia-bao Liu, Faisal Ali","doi":"10.1515/hc-2020-0102","DOIUrl":null,"url":null,"abstract":"Abstract Several properties of chemical compounds in a molecular structure can be determined with the aid of mathematical languages provided by various types of topological indices. In this paper, we consider eight dendrimer structures in the context of valency based topological indices. We define four Banhatti polynomials for general (molecular) graphs, and compute them for underline dendrimers. We use these polynomials to determine four Banhatti indices. We also determine Zagreb (first, second and hyper) and forgotten indices by developing their relationships with Banhatti indices.","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"26 1","pages":"99 - 111"},"PeriodicalIF":1.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/hc-2020-0102","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2020-0102","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Several properties of chemical compounds in a molecular structure can be determined with the aid of mathematical languages provided by various types of topological indices. In this paper, we consider eight dendrimer structures in the context of valency based topological indices. We define four Banhatti polynomials for general (molecular) graphs, and compute them for underline dendrimers. We use these polynomials to determine four Banhatti indices. We also determine Zagreb (first, second and hyper) and forgotten indices by developing their relationships with Banhatti indices.
由Banhatti多项式确定树枝状大分子的一些拓扑指数
摘要化合物在分子结构中的几个性质可以借助于由各种拓扑指数提供的数学语言来确定。在本文中,我们在基于化合价的拓扑指数的背景下考虑了八种树状大分子结构。我们为一般(分子)图定义了四个Banhatti多项式,并为下划线树枝状聚合物计算它们。我们使用这些多项式来确定四个Banhatti指数。我们还通过发展萨格勒布(第一、第二和超)和遗忘指数与Banhatti指数的关系来确定它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heterocyclic Communications
Heterocyclic Communications 化学-有机化学
CiteScore
3.80
自引率
4.30%
发文量
13
审稿时长
1.4 months
期刊介绍: Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信