Griolin teoreema: rotaatio, joka minimoi muodonmuutoksen

Q4 Engineering
Martti Mikkola
{"title":"Griolin teoreema: rotaatio, joka minimoi muodonmuutoksen","authors":"Martti Mikkola","doi":"10.23998/rm.77296","DOIUrl":null,"url":null,"abstract":"In this paper, the celebrated theorem of G. Grioli is considered according to which the rotation factor in the polar decomposition of the deformation gradient minimizes Biot's strain tensor. The theorem is demonstrated by applications to some cases in large displacement theory: simple shear, plane deformation, Euler-Bernoulli and Timoshenko beam theories, and bar element in space. An interpretation could be that the material behaves economically: first occurs the part of deformation which does not induce any stresses and then the material starts to resist the deformation.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":"53 1","pages":"110-124"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/rm.77296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the celebrated theorem of G. Grioli is considered according to which the rotation factor in the polar decomposition of the deformation gradient minimizes Biot's strain tensor. The theorem is demonstrated by applications to some cases in large displacement theory: simple shear, plane deformation, Euler-Bernoulli and Timoshenko beam theories, and bar element in space. An interpretation could be that the material behaves economically: first occurs the part of deformation which does not induce any stresses and then the material starts to resist the deformation.
格里奥定理:使变形最小化的旋转
本文考虑了著名的G. Grioli定理,根据该定理,变形梯度极分解中的旋转因子使Biot应变张量最小。通过应用于大位移理论中的简单剪切、平面变形、Euler-Bernoulli和Timoshenko梁理论以及空间中的杆单元,证明了该定理。一种解释可能是材料的经济行为:首先发生不引起任何应力的变形部分,然后材料开始抵抗变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rakenteiden Mekaniikka
Rakenteiden Mekaniikka Engineering-Mechanical Engineering
CiteScore
0.50
自引率
0.00%
发文量
2
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信