Nonthermal particles and photons in starburst regions and superbubbles

IF 27.8 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Andrei M. Bykov
{"title":"Nonthermal particles and photons in starburst regions and superbubbles","authors":"Andrei M. Bykov","doi":"10.1007/s00159-014-0077-8","DOIUrl":null,"url":null,"abstract":"<p>Starforming factories in galaxies produce compact clusters and loose associations of young massive stars. Fast radiation-driven winds and supernovae input their huge kinetic power into the interstellar medium in the form of highly supersonic and superalfvenic outflows. Apart from gas heating, collisionless relaxation of fast plasma outflows results in fluctuating magnetic fields and energetic particles. The energetic particles comprise a long-lived component which may contain a sizeable fraction of the kinetic energy released by the winds and supernova ejecta and thus modify the magnetohydrodynamic flows in the systems. We present a concise review of observational data and models of nonthermal emission from starburst galaxies, superbubbles, and compact clusters of massive stars. Efficient mechanisms of particle acceleration and amplification of fluctuating magnetic fields with a wide dynamical range in starburst regions are discussed. Sources of cosmic rays, neutrinos and multi-wavelength nonthermal emission associated with starburst regions including potential galactic “PeVatrons” are reviewed in the global galactic ecology context.</p>","PeriodicalId":785,"journal":{"name":"The Astronomy and Astrophysics Review","volume":"22 1","pages":""},"PeriodicalIF":27.8000,"publicationDate":"2014-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00159-014-0077-8","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astronomy and Astrophysics Review","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00159-014-0077-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 80

Abstract

Starforming factories in galaxies produce compact clusters and loose associations of young massive stars. Fast radiation-driven winds and supernovae input their huge kinetic power into the interstellar medium in the form of highly supersonic and superalfvenic outflows. Apart from gas heating, collisionless relaxation of fast plasma outflows results in fluctuating magnetic fields and energetic particles. The energetic particles comprise a long-lived component which may contain a sizeable fraction of the kinetic energy released by the winds and supernova ejecta and thus modify the magnetohydrodynamic flows in the systems. We present a concise review of observational data and models of nonthermal emission from starburst galaxies, superbubbles, and compact clusters of massive stars. Efficient mechanisms of particle acceleration and amplification of fluctuating magnetic fields with a wide dynamical range in starburst regions are discussed. Sources of cosmic rays, neutrinos and multi-wavelength nonthermal emission associated with starburst regions including potential galactic “PeVatrons” are reviewed in the global galactic ecology context.

Abstract Image

星爆区和超泡中的非热粒子和光子
星系中的恒星形成工厂产生紧密的星团和松散的年轻大质量恒星组合。快速辐射驱动的风和超新星将其巨大的动能以超声速和超声速流出的形式输入星际介质。除了气体加热外,快速等离子体流出的无碰撞松弛导致磁场波动和高能粒子。高能粒子包含一个长寿命的成分,它可能包含风和超新星喷出物释放的相当大一部分动能,从而改变系统中的磁流体动力学流动。我们简要回顾了星暴星系、超级气泡和大质量恒星的致密星团的观测数据和非热发射模型。讨论了星爆区域中粒子加速和宽动态范围波动磁场放大的有效机制。在全球星系生态背景下,综述了与星暴区域相关的宇宙射线、中微子和多波长非热辐射的来源,包括潜在的星系“pevatron”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Astronomy and Astrophysics Review
The Astronomy and Astrophysics Review 地学天文-天文与天体物理
CiteScore
45.00
自引率
0.80%
发文量
7
期刊介绍: The Astronomy and Astrophysics Review is a journal that covers all areas of astronomy and astrophysics. It includes subjects related to other fields such as laboratory or particle physics, cosmic ray physics, studies in the solar system, astrobiology, instrumentation, and computational and statistical methods with specific astronomical applications. The frequency of review articles depends on the level of activity in different areas. The journal focuses on publishing review articles that are scientifically rigorous and easily comprehensible. These articles serve as a valuable resource for scientists, students, researchers, and lecturers who want to explore new or unfamiliar fields. The journal is abstracted and indexed in various databases including the Astrophysics Data System (ADS), BFI List, CNKI, CNPIEC, Current Contents/Physical, Chemical and Earth Sciences, Dimensions, EBSCO Academic Search, EI Compendex, Japanese Science and Technology, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信