{"title":"Parameter identification and range restriction through sensitivity analysis for a high-temperature heat injection test","authors":"Stefan Heldt, Bo Wang, Sebastian Bauer","doi":"10.1186/s40517-023-00255-5","DOIUrl":null,"url":null,"abstract":"<div><p>In order to compensate for the variable mismatch between heat demand and heat production from renewable sources or waste heat, high-temperature aquifer thermal energy storage (HT-ATES) is a promising option. A reliable prediction of the energetic performance as well as thermal and hydraulic impacts of a HT-ATES requires a suitable model parameterization regarding the subsurface properties. In order to identify the subsurface parameters on which investigation efforts should be focused, we carried out an extensive sensitivity analysis of the thermal and hydraulic parameters for a high-temperature heat injection test (HIT) using numerical modeling of the governing coupled thermo-hydraulic processes. The heat injection test was carried out in a quaternary shallow aquifer using injection temperatures of about 75 °C over 5 days, accompanied by an extensive temperature monitoring. The sensitivity analysis is conducted for parameter ranges based on literature values, based on site investigation at the HIT site and based on a model calibrated to the measured temperature distribution following the heat injection. Comparing the parameter ranges thus obtained in this three-step approach allows to identify those parameters, for which model prediction uncertainty decreased most, which are also the parameters, that strongly affect the thermal behavior. The highest sensitivity is found for vertical and horizontal hydraulic conductivity as well as for groundwater flow velocity, indicating that investigation efforts for HT-ATES projects should focus on these parameters. Heat capacity and thermal conductivity have a smaller impact on the temperature distribution. Our work thus yields a consistent approach to identifying the parameters which can be best restricted by field investigations and subsequent model calibration. Focusing on these during field investigations thus enable improved model predictions of both HT-ATES operation and induced impacts.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00255-5","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00255-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
In order to compensate for the variable mismatch between heat demand and heat production from renewable sources or waste heat, high-temperature aquifer thermal energy storage (HT-ATES) is a promising option. A reliable prediction of the energetic performance as well as thermal and hydraulic impacts of a HT-ATES requires a suitable model parameterization regarding the subsurface properties. In order to identify the subsurface parameters on which investigation efforts should be focused, we carried out an extensive sensitivity analysis of the thermal and hydraulic parameters for a high-temperature heat injection test (HIT) using numerical modeling of the governing coupled thermo-hydraulic processes. The heat injection test was carried out in a quaternary shallow aquifer using injection temperatures of about 75 °C over 5 days, accompanied by an extensive temperature monitoring. The sensitivity analysis is conducted for parameter ranges based on literature values, based on site investigation at the HIT site and based on a model calibrated to the measured temperature distribution following the heat injection. Comparing the parameter ranges thus obtained in this three-step approach allows to identify those parameters, for which model prediction uncertainty decreased most, which are also the parameters, that strongly affect the thermal behavior. The highest sensitivity is found for vertical and horizontal hydraulic conductivity as well as for groundwater flow velocity, indicating that investigation efforts for HT-ATES projects should focus on these parameters. Heat capacity and thermal conductivity have a smaller impact on the temperature distribution. Our work thus yields a consistent approach to identifying the parameters which can be best restricted by field investigations and subsequent model calibration. Focusing on these during field investigations thus enable improved model predictions of both HT-ATES operation and induced impacts.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.