Rigid continuation paths II. structured polynomial systems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Peter Bürgisser, F. Cucker, Pierre Lairez
{"title":"Rigid continuation paths II. structured polynomial systems","authors":"Peter Bürgisser, F. Cucker, Pierre Lairez","doi":"10.1017/fmp.2023.7","DOIUrl":null,"url":null,"abstract":"Abstract This work studies the average complexity of solving structured polynomial systems that are characterised by a low evaluation cost, as opposed to the dense random model previously used. Firstly, we design a continuation algorithm that computes, with high probability, an approximate zero of a polynomial system given only as black-box evaluation program. Secondly, we introduce a universal model of random polynomial systems with prescribed evaluation complexity L. Combining both, we show that we can compute an approximate zero of a random structured polynomial system with n equations of degree at most \n${D}$\n in n variables with only \n$\\operatorname {poly}(n, {D}) L$\n operations with high probability. This exceeds the expectations implicit in Smale’s 17th problem.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract This work studies the average complexity of solving structured polynomial systems that are characterised by a low evaluation cost, as opposed to the dense random model previously used. Firstly, we design a continuation algorithm that computes, with high probability, an approximate zero of a polynomial system given only as black-box evaluation program. Secondly, we introduce a universal model of random polynomial systems with prescribed evaluation complexity L. Combining both, we show that we can compute an approximate zero of a random structured polynomial system with n equations of degree at most ${D}$ in n variables with only $\operatorname {poly}(n, {D}) L$ operations with high probability. This exceeds the expectations implicit in Smale’s 17th problem.
刚性延续路径2。结构多项式系统
本文研究了以低评估成本为特征的结构化多项式系统的平均复杂性,而不是以前使用的密集随机模型。首先,我们设计了一种延续性算法,该算法可以高概率地计算仅以黑箱评估程序给出的多项式系统的近似零。其次,我们引入了一个具有规定求值复杂度L的随机多项式系统的通用模型,结合两者,我们证明了我们可以在n个变量中,只需要$\operatorname {poly}(n, {D}) L$操作,就可以计算出n个最多${D}$次方程的随机结构多项式系统的近似零。这超出了Smale第17个问题中隐含的预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信