Some universal patterns in income distribution: An econophysics approach

IF 1 3区 经济学 Q3 ECONOMICS
Metroeconomica Pub Date : 2022-09-28 DOI:10.1111/meca.12412
Anwar Shaikh, Amr Ragab
{"title":"Some universal patterns in income distribution: An econophysics approach","authors":"Anwar Shaikh,&nbsp;Amr Ragab","doi":"10.1111/meca.12412","DOIUrl":null,"url":null,"abstract":"<p>The econophysics “two-class” approach yields a novel theoretical and empirically robust relation: The per capita income <math>\n <semantics>\n <mrow>\n <mover>\n <mi>y</mi>\n <mo>‾</mo>\n </mover>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\overline{y}(x)$</annotation>\n </semantics></math> of <i>any</i> bottom fraction (<i>x</i>) of the population equals a(<i>x</i>)∙(1−<i>G</i>) <math>\n <semantics>\n <mrow>\n <mover>\n <mi>y</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation> $\\overline{y}$</annotation>\n </semantics></math>, where <i>a</i>(<i>x</i>) is a coupling coefficient, <i>G</i> the Gini, and <math>\n <semantics>\n <mrow>\n <mover>\n <mi>y</mi>\n <mo>‾</mo>\n </mover>\n </mrow>\n <annotation> $\\overline{y}$</annotation>\n </semantics></math> is national per capita income. For the bottom 70%, <i>a</i>(70) = 1, which yields the Sen inequality adjustment to the 1993 UNDP Human Development Index, without any reliance on social welfare functions. Alternately, <i>a</i>(80) = 1.1 yields the bottom 80% per capita income (Vast Majority Income). We propose the latter as a new inequality-adjusted measure of wellbeing.</p>","PeriodicalId":46885,"journal":{"name":"Metroeconomica","volume":"74 1","pages":"248-264"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metroeconomica","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/meca.12412","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

Abstract

The econophysics “two-class” approach yields a novel theoretical and empirically robust relation: The per capita income y ( x ) $\overline{y}(x)$ of any bottom fraction (x) of the population equals a(x)∙(1−G) y $\overline{y}$ , where a(x) is a coupling coefficient, G the Gini, and y $\overline{y}$ is national per capita income. For the bottom 70%, a(70) = 1, which yields the Sen inequality adjustment to the 1993 UNDP Human Development Index, without any reliance on social welfare functions. Alternately, a(80) = 1.1 yields the bottom 80% per capita income (Vast Majority Income). We propose the latter as a new inequality-adjusted measure of wellbeing.

收入分配中的一些普遍模式:一种经济物理学方法
本文利用经济学的“两类”收入分配方法,在世界收入不平等综合数据库中推导出适用于所有国家的某些经验规则。这种方法表明,工资收入遵循指数分布,而房地产收入遵循帕累托分布,这导致了洛伦兹曲线的简单且实证稳健的近似。我们反过来证明,人口中任何底层部分(x)的人均收入与“不平等调整后的人均GDP”成比例,即与(人均GDP)成比例。(1-Gini),比例常数a(x)仅是所考虑的人口比例的函数。在我们的大型数据库中,随着时间的推移,这一命题在各个国家的经验上都是稳健的。我们关注两种模式。“1.1规则”中,一个国家最底层80%人口的人均收入,即我们所说的“巨大多数收入”,可以在每个国家计算为1.1(人均GDP)。(1-基尼)。使用VMI代替人均GDP会产生不同的国家排名。其次,“1.0规则”,即最底层70%的人均收入直接等于不平等调整后的人均GDP。Sen(1976)使用传统的福利理论得出了不平等调整后的人均GDP作为社会福利的衡量标准,而我们使用EPTC得出了最底层70%的人均收入的衡量标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metroeconomica
Metroeconomica ECONOMICS-
CiteScore
2.40
自引率
15.40%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信