Bethy Merchán-Sanmartín, P. Carrión-Mero, Sebastián Suárez-Zamora, Maribel Aguilar-Aguilar, Omar Cruz-Cabrera, Katherine Hidalgo-Calva, Fernando Morante-Carballo
{"title":"Stormwater Sewerage Masterplan for Flood Control Applied to a University Campus","authors":"Bethy Merchán-Sanmartín, P. Carrión-Mero, Sebastián Suárez-Zamora, Maribel Aguilar-Aguilar, Omar Cruz-Cabrera, Katherine Hidalgo-Calva, Fernando Morante-Carballo","doi":"10.3390/smartcities6030062","DOIUrl":null,"url":null,"abstract":"Floods generated by rain cause significant economic and human losses. The campus of the Escuela Superior Politécnica del Litoral (ESPOL) has a drainage system that conducts stormwater to two discharge points outside the campus. The system works effectively at the macro-drainage level. However, a very crowded area is deficient at the micro-drainage level, which has registered flooding and the proliferation of vectors that affect people’s health. This work aimed to design a masterplan for stormwater sewerage by analyzing the existing situation and applying technical criteria that allow the establishment of solutions and strategies to control floods at the university campus. The methodology consisted of: (i) data collection and processing for the stormwater drainage system diagnosis; (ii) a design proposal for micro-drainage and (iii) a SWOT analysis to propose improvement strategies in water management. The resulting flows for return periods of 5 years, 10 years, and 25 years are 9.67 m3/s, 11.85 m3/s, and 15.85 m3/s, respectively. In the latter, as the most critical area (presence of flooding), the implementation of a trapezoidal channel 80.20 m long, with a capacity of 1.00 m3/s, for a return period of 25 years was proposed. The stormwater masterplan will contribute to the execution of activities within the campus and prevent accidents and the proliferation of diseases, constituting a water-management model that can be replicated locally, regionally, and internationally.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities6030062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Floods generated by rain cause significant economic and human losses. The campus of the Escuela Superior Politécnica del Litoral (ESPOL) has a drainage system that conducts stormwater to two discharge points outside the campus. The system works effectively at the macro-drainage level. However, a very crowded area is deficient at the micro-drainage level, which has registered flooding and the proliferation of vectors that affect people’s health. This work aimed to design a masterplan for stormwater sewerage by analyzing the existing situation and applying technical criteria that allow the establishment of solutions and strategies to control floods at the university campus. The methodology consisted of: (i) data collection and processing for the stormwater drainage system diagnosis; (ii) a design proposal for micro-drainage and (iii) a SWOT analysis to propose improvement strategies in water management. The resulting flows for return periods of 5 years, 10 years, and 25 years are 9.67 m3/s, 11.85 m3/s, and 15.85 m3/s, respectively. In the latter, as the most critical area (presence of flooding), the implementation of a trapezoidal channel 80.20 m long, with a capacity of 1.00 m3/s, for a return period of 25 years was proposed. The stormwater masterplan will contribute to the execution of activities within the campus and prevent accidents and the proliferation of diseases, constituting a water-management model that can be replicated locally, regionally, and internationally.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.