An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis

IF 0.9 4区 材料科学 Q3 CRYSTALLOGRAPHY
Jun-Xia Li, Shuai Ge, Yi-Jing Lu, Xiao-Jie Xu, Chan-Hua Liu, Shihui Li
{"title":"An asymmetric mononuclear cobalt(II) compound derived from 3-bromo-pyridine-2,6-dicarboxylic acid involving in-situ hydrothermal decarboxylation: structure, magnetic property and Hirshfeld surface analysis","authors":"Jun-Xia Li, Shuai Ge, Yi-Jing Lu, Xiao-Jie Xu, Chan-Hua Liu, Shihui Li","doi":"10.1515/zkri-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract A new cobalt(II) compound with the formula [Co(5-Br-pyc)(2,2′-bipy)(H2O)(Cl)]·2H2O (1·H2O) (5-Br-Hpyc = 5-bromo-pyridine-2-carboxylic acid, 2,2′-bipy = 2,2′-bipyridine) has been hydrothermally synthesized and well characterized. The X-ray single-crystal diffraction analysis showed that 1⋅2H2O has crystallizes in the monoclinic system, space group P21/c (no. 14). The Co(II) center was octahedrally bonded by one bidentate chelate 5-Br-pyc anion and one 2,2′-bipy, one water molecule as well as one chloride anion to form the mononuclear structure of 1⋅2H2O. Complex 1⋅2H2O forms a 3D network through abundant O–H⋅⋅⋅O hydrogen bonds and π⋅⋅⋅π stacking interactions. Notably, the 5-Br-Hpyc ligand was in situ generated by decarboxylation of the 3-bromo-pyridine-2,6-dicarboxylic acid (3-Br-H2pydc) precursor selectively on 2-position under hydrothermal conditions. The magnetic properties, the Hirshfeld surface structure and the synthetic process for 1⋅2H2O have been carefully described and discussed.","PeriodicalId":48676,"journal":{"name":"Zeitschrift Fur Kristallographie-Crystalline Materials","volume":"238 1","pages":"139 - 149"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Kristallographie-Crystalline Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/zkri-2023-0001","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A new cobalt(II) compound with the formula [Co(5-Br-pyc)(2,2′-bipy)(H2O)(Cl)]·2H2O (1·H2O) (5-Br-Hpyc = 5-bromo-pyridine-2-carboxylic acid, 2,2′-bipy = 2,2′-bipyridine) has been hydrothermally synthesized and well characterized. The X-ray single-crystal diffraction analysis showed that 1⋅2H2O has crystallizes in the monoclinic system, space group P21/c (no. 14). The Co(II) center was octahedrally bonded by one bidentate chelate 5-Br-pyc anion and one 2,2′-bipy, one water molecule as well as one chloride anion to form the mononuclear structure of 1⋅2H2O. Complex 1⋅2H2O forms a 3D network through abundant O–H⋅⋅⋅O hydrogen bonds and π⋅⋅⋅π stacking interactions. Notably, the 5-Br-Hpyc ligand was in situ generated by decarboxylation of the 3-bromo-pyridine-2,6-dicarboxylic acid (3-Br-H2pydc) precursor selectively on 2-position under hydrothermal conditions. The magnetic properties, the Hirshfeld surface structure and the synthetic process for 1⋅2H2O have been carefully described and discussed.
3-溴吡啶-2,6-二羧酸原位水热脱羧制备的不对称单核钴(II)化合物:结构、磁性能和Hirshfeld表面分析
摘要水热合成了一种新的钴(II)化合物[Co(5-Br-pyc)(2,2′-联吡啶)(H2O)(Cl)]·2H2O(1·H2O)(5-Br-Hpyc=5-溴吡啶-2-羧酸,2,2’-联吡啶=22′-双吡啶),并对其进行了表征。X射线单晶衍射分析表明,1·2H2O在单斜晶系中结晶,空间群为P21/c(no.14)。Co(II)中心由一个双齿螯合物5-Br-pyc阴离子和一个2,2′-bipy,一个水分子和一个氯离子八面体键合,形成1·2H2O的单核结构。配合物1‧2H2O通过丰富的O–H‧‧‧O氢键和π‧‧‧‧π堆积相互作用形成三维网络。值得注意的是,5-Br-Hpyc配体是通过3-溴-吡啶-2,6-二羧酸(3-Br-H2pydc)前体在水热条件下选择性地在2-位脱羧而原位产生的。本文对1·2H2O的磁性能、Hirschfeld表面结构和合成过程进行了详细的描述和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
16.70%
发文量
55
期刊介绍: Zeitschrift für Kristallographie – Crystalline Materials was founded in 1877 by Paul von Groth and is today one of the world’s oldest scientific journals. It offers a place for researchers to present results of their theoretical experimental crystallographic studies. The journal presents significant results on structures and on properties of organic/inorganic substances with crystalline character, periodically ordered, modulated or quasicrystalline on static and dynamic phenomena applying the various methods of diffraction, spectroscopy and microscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信