Statistical Learning for Nonlinear Dynamical Systems with Applications to Aircraft-UAV Collisions

IF 2.3 3区 工程技术 Q1 STATISTICS & PROBABILITY
Xinchao Liu, Xiao Liu, T. Kaman, Xiaohua Lu, Guang Lin
{"title":"Statistical Learning for Nonlinear Dynamical Systems with Applications to Aircraft-UAV Collisions","authors":"Xinchao Liu, Xiao Liu, T. Kaman, Xiaohua Lu, Guang Lin","doi":"10.1080/00401706.2023.2203175","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article investigates a physics-informed statistical approach capable of (i) learning nonlinear system dynamics by using data generated from a nonlinear system as well as the underlying governing physics, and (ii) predicting system dynamics with reasonable accuracy and a computational speed much faster than numerical methods. The proposed approach obtains the reduced-order model from the full-order governing equations. A function-to-function regression, based on multivariate Functional Principal Component Analysis, establishes the mapping between external forcing and system dynamics, while a multivariate Gaussian Process is used to capture the relationship between parameters and external forcing. In the application, the proposed approach is applied to predict aircraft nose skin deformation after Unmanned Aerial Vehicle (UAV) collisions at different impact attitudes (i.e., pitch, yaw and roll degrees). We show that the proposed physics-informed statistical model can achieve a 12% out-of-sample mean relative error, and is more than 103 times faster than Finite Element Analysis (FEA). Computer code and sample data are available on GitHub.","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technometrics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00401706.2023.2203175","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This article investigates a physics-informed statistical approach capable of (i) learning nonlinear system dynamics by using data generated from a nonlinear system as well as the underlying governing physics, and (ii) predicting system dynamics with reasonable accuracy and a computational speed much faster than numerical methods. The proposed approach obtains the reduced-order model from the full-order governing equations. A function-to-function regression, based on multivariate Functional Principal Component Analysis, establishes the mapping between external forcing and system dynamics, while a multivariate Gaussian Process is used to capture the relationship between parameters and external forcing. In the application, the proposed approach is applied to predict aircraft nose skin deformation after Unmanned Aerial Vehicle (UAV) collisions at different impact attitudes (i.e., pitch, yaw and roll degrees). We show that the proposed physics-informed statistical model can achieve a 12% out-of-sample mean relative error, and is more than 103 times faster than Finite Element Analysis (FEA). Computer code and sample data are available on GitHub.
非线性动力系统的统计学习及其在飞机-无人机碰撞中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Technometrics
Technometrics 管理科学-统计学与概率论
CiteScore
4.50
自引率
16.00%
发文量
59
审稿时长
>12 weeks
期刊介绍: Technometrics is a Journal of Statistics for the Physical, Chemical, and Engineering Sciences, and is published Quarterly by the  American Society for Quality and the American Statistical Association.Since its inception in 1959, the mission of Technometrics has been to contribute to the development and use of statistical methods in the physical, chemical, and engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信