E. Pechersky, S. Pirogov, G. Schutz, A. Vladimirov, A. Yambartsev
{"title":"Large Emission Regime in Mean Field Luminescence","authors":"E. Pechersky, S. Pirogov, G. Schutz, A. Vladimirov, A. Yambartsev","doi":"10.17323/1609-4514-2019-19-1-107-120","DOIUrl":null,"url":null,"abstract":"We study a class of random processes on $N$ particles which can be interpreted as stochastic model of luminescence. Each particle can stay in one of two states: Excited state or ground state. Any particle at ground state is excited with a constant rate (pumping). The number of excited particles decreases by means of photon emission through interactions of the particles. We analyse the rare event of flashes, i.e., the emission of a very large number of photons $B$ during a fixed time interval $T$. We employ the theory of large deviations to provide the asymptotics of the probability of such event when the total number of particles $N$ tends to infinity. This theory gives us also the optimal trajectory of scaled process corresponding to this event. The stationary regime of this process we call the large emission regime. In several cases we prove that in the large emission regime a share of excited particles in a system is stable under the changes of the pumping and emission rates.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2019-19-1-107-120","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We study a class of random processes on $N$ particles which can be interpreted as stochastic model of luminescence. Each particle can stay in one of two states: Excited state or ground state. Any particle at ground state is excited with a constant rate (pumping). The number of excited particles decreases by means of photon emission through interactions of the particles. We analyse the rare event of flashes, i.e., the emission of a very large number of photons $B$ during a fixed time interval $T$. We employ the theory of large deviations to provide the asymptotics of the probability of such event when the total number of particles $N$ tends to infinity. This theory gives us also the optimal trajectory of scaled process corresponding to this event. The stationary regime of this process we call the large emission regime. In several cases we prove that in the large emission regime a share of excited particles in a system is stable under the changes of the pumping and emission rates.
期刊介绍:
The Moscow Mathematical Journal (MMJ) is an international quarterly published (paper and electronic) by the Independent University of Moscow and the department of mathematics of the Higher School of Economics, and distributed by the American Mathematical Society. MMJ presents highest quality research and research-expository papers in mathematics from all over the world. Its purpose is to bring together different branches of our science and to achieve the broadest possible outlook on mathematics, characteristic of the Moscow mathematical school in general and of the Independent University of Moscow in particular.
An important specific trait of the journal is that it especially encourages research-expository papers, which must contain new important results and include detailed introductions, placing the achievements in the context of other studies and explaining the motivation behind the research. The aim is to make the articles — at least the formulation of the main results and their significance — understandable to a wide mathematical audience rather than to a narrow class of specialists.