{"title":"Brianchon and Poncelet’s joint memoir, the nine-point circle, and beyond","authors":"Andrea Del Centina","doi":"10.1007/s00407-022-00286-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give a thorough account of Brianchon and Poncelet’s joint memoir on equilateral hyperbolas subject to four given conditions, focusing on the most significant theorems expounded therein, and the determination of the “nine-point circle”. We also discuss about the origin of this very rare example of collaborative work for the time, and the general challenge of finding the nature of the loci described by the centres of the conic sections required to pass through <i>m</i> points and to be tangent to <i>n</i> straight lines given in position, <i>m</i> + <i>n</i> = 4, which was posed at the end of their work. In the case <i>m</i> = 4, i.e. when the conic sections have to pass through the vertices of a quadrilateral, the locus of centres is another conic section passing through the intersection points of the opposite sides and the two diagonals of the quadrilateral, respectively, and, as Gergonne showed analytically shortly after, through other significant points connected with the quadrilateral; this curve was later given the name of the “nine-point conic”, being a natural generalization of the above mentioned circle.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"76 4","pages":"363 - 390"},"PeriodicalIF":0.7000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-022-00286-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-022-00286-7","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we give a thorough account of Brianchon and Poncelet’s joint memoir on equilateral hyperbolas subject to four given conditions, focusing on the most significant theorems expounded therein, and the determination of the “nine-point circle”. We also discuss about the origin of this very rare example of collaborative work for the time, and the general challenge of finding the nature of the loci described by the centres of the conic sections required to pass through m points and to be tangent to n straight lines given in position, m + n = 4, which was posed at the end of their work. In the case m = 4, i.e. when the conic sections have to pass through the vertices of a quadrilateral, the locus of centres is another conic section passing through the intersection points of the opposite sides and the two diagonals of the quadrilateral, respectively, and, as Gergonne showed analytically shortly after, through other significant points connected with the quadrilateral; this curve was later given the name of the “nine-point conic”, being a natural generalization of the above mentioned circle.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.