Influences of nano-SiO2 on the tensile, flexural, and compressive characteristics of the open-hole carbon fiber-reinforced polymer laminated composites: experimental study
Reza Emrahi, Y. Rostamiyan, Mehdi Hashemi-Tilehnoee
{"title":"Influences of nano-SiO2 on the tensile, flexural, and compressive characteristics of the open-hole carbon fiber-reinforced polymer laminated composites: experimental study","authors":"Reza Emrahi, Y. Rostamiyan, Mehdi Hashemi-Tilehnoee","doi":"10.1088/2631-6331/ace3a1","DOIUrl":null,"url":null,"abstract":"Carbon fiber are of great importance materials exploited in various industrial applications in the recent years. Because of its strong flexural and compressive properties, these fibers have been commonly utilized as a reinforcement for producing polymer composite laminates. Carbon fiber-reinforced polymer (CFRP) laminates are subjected to extreme forces and damaged. In the component assembly of the structures, one of the conventional damages that still occurs on the CFRP laminates is holes that is created on the specimen by drilling tools, which causes a reduction in the laminates’ mechanical strength. One of the suggested ways to strengthen the mechanical properties of composites is to add nanoparticles. Therefore, the impact of silica nanoparticles (nano-SiO2) on the tensile, flexural, and compressive characteristics of the open-hole CFRP laminated composites is experimentally determined in this research. Nano-SiO2 with various weight percentage of 0, 1, 2, 3, and 4 is added into the CFRP. A scanning electron microscope images are used to observe the microscopic structure of the composites. The results showed that adding 1–3 wt.% of nano-SiO2 into the CFRP enhances the tensile, flexural, and compressive strength of the specimens and reduces the fiber pull out and delamination.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composites and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/ace3a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber are of great importance materials exploited in various industrial applications in the recent years. Because of its strong flexural and compressive properties, these fibers have been commonly utilized as a reinforcement for producing polymer composite laminates. Carbon fiber-reinforced polymer (CFRP) laminates are subjected to extreme forces and damaged. In the component assembly of the structures, one of the conventional damages that still occurs on the CFRP laminates is holes that is created on the specimen by drilling tools, which causes a reduction in the laminates’ mechanical strength. One of the suggested ways to strengthen the mechanical properties of composites is to add nanoparticles. Therefore, the impact of silica nanoparticles (nano-SiO2) on the tensile, flexural, and compressive characteristics of the open-hole CFRP laminated composites is experimentally determined in this research. Nano-SiO2 with various weight percentage of 0, 1, 2, 3, and 4 is added into the CFRP. A scanning electron microscope images are used to observe the microscopic structure of the composites. The results showed that adding 1–3 wt.% of nano-SiO2 into the CFRP enhances the tensile, flexural, and compressive strength of the specimens and reduces the fiber pull out and delamination.