Souplet–Zhang and Hamilton-type gradient estimates for non-linear elliptic equations on smooth metric measure spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-05-21 DOI:10.1112/mtk.12208
Ali Taheri, Vahideh Vahidifar
{"title":"Souplet–Zhang and Hamilton-type gradient estimates for non-linear elliptic equations on smooth metric measure spaces","authors":"Ali Taheri,&nbsp;Vahideh Vahidifar","doi":"10.1112/mtk.12208","DOIUrl":null,"url":null,"abstract":"<p>In this article, we present new gradient estimates for positive solutions to a class of non-linear elliptic equations  involving the <i>f</i>-Laplacian on a smooth metric measure space. The gradient estimates of interest are of Souplet–Zhang and Hamilton types, respectively, and are established under natural lower bounds on the generalised Bakry–Émery Ricci curvature tensor. From these estimates, we derive amongst other things Harnack inequalities and general global constancy and Liouville-type theorems. The results and approach undertaken here provide a unified treatment and extend and improve various existing results in the literature. Some implications and applications are presented and discussed.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12208","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12208","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, we present new gradient estimates for positive solutions to a class of non-linear elliptic equations  involving the f-Laplacian on a smooth metric measure space. The gradient estimates of interest are of Souplet–Zhang and Hamilton types, respectively, and are established under natural lower bounds on the generalised Bakry–Émery Ricci curvature tensor. From these estimates, we derive amongst other things Harnack inequalities and general global constancy and Liouville-type theorems. The results and approach undertaken here provide a unified treatment and extend and improve various existing results in the literature. Some implications and applications are presented and discussed.

光滑度量测度空间上非线性椭圆型方程的Souplet–Zhang和Hamilton型梯度估计
在本文中,我们给出了一类非线性椭圆方程正解的新的梯度估计,该方程涉及光滑度量测度空间上的f‐拉普拉斯算子。感兴趣的梯度估计分别属于Souplet–Zhang和Hamilton类型,并且是在广义Bakry–Émery Ricci曲率张量的自然下界下建立的。从这些估计中,我们导出了Harnack不等式、一般全局恒常性和Liouville型定理。本文的结果和方法提供了统一的处理方法,并扩展和改进了文献中的各种现有结果。介绍和讨论了一些含义和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信