F. Lodovico, R. Patterson, M. Shiozawa, E. Worcester
{"title":"Experimental Considerations in Long-Baseline Neutrino Oscillation Measurements","authors":"F. Lodovico, R. Patterson, M. Shiozawa, E. Worcester","doi":"10.1146/annurev-nucl-102020-101615","DOIUrl":null,"url":null,"abstract":"Long-baseline neutrino oscillation experiments, which are among the largest neutrino experiments in the world, have extensive physics programs to make precision measurements of three-flavor oscillation parameters, search for physics beyond the Standard Model, and study neutrinos from astrophysical sources. In this article, experimental considerations, including oscillation phenomenology, detector and experiment design, and analysis strategies, are described, with a focus on the three-flavor oscillation measurements. Current and future experiments are discussed, and significant sources of systematic uncertainty, along with mitigation strategies, are emphasized as control of systematic uncertainty is critical for success in precise measurement of long-baseline oscillation parameters. This article is structured as a primer for those new to this area of experimental work. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-102020-101615","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Long-baseline neutrino oscillation experiments, which are among the largest neutrino experiments in the world, have extensive physics programs to make precision measurements of three-flavor oscillation parameters, search for physics beyond the Standard Model, and study neutrinos from astrophysical sources. In this article, experimental considerations, including oscillation phenomenology, detector and experiment design, and analysis strategies, are described, with a focus on the three-flavor oscillation measurements. Current and future experiments are discussed, and significant sources of systematic uncertainty, along with mitigation strategies, are emphasized as control of systematic uncertainty is critical for success in precise measurement of long-baseline oscillation parameters. This article is structured as a primer for those new to this area of experimental work. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.