{"title":"Antioxidant status and hepato-protective role of Anchomanes difformis in streptozotocin-induced diabetes in male Wistar rats","authors":"T. Alabi, N. Brooks, O. Oguntibeju","doi":"10.2478/hepo-2020-0005","DOIUrl":null,"url":null,"abstract":"Summary Introduction: The liver is involved in the metabolism of xenobiotics and their metabolites and it is vulnerable to oxidative damage. Hyperglycaemia is highly implicated in the progression of diabetes mellitus, and adversely affects the liver. Though, conventional hypoglycaemic drugs may be effective in reducing blood glucose, they do not appear to be effective in attenuating the progression of diabetes and its complications. Objective: This study evaluated the ameliorative effects of Anchomanes difformis on hyperglycaemia and hepatic injuries in type 2 diabetes. Methods: Type 2 diabetes was induced in male Wistar rats with a single intraperitoneal injection of streptozotocin (40 mg/kg BW) after two weeks of fructose (10%) administration. Aqueous extract of A. difformis (200 and 400 mg/kg BW) and glibenclamide (5 mg/kg BW) were administered orally for six weeks. Blood glucose concentrations were measured. Serum levels of liver dysfunction markers (ALT, AST, and ALP), total cholesterol, triglycerides, HDL- and LDL-cholesterol were investigated. Total protein, albumin, and globulin were also assessed. Antioxidant parameters: ORAC, GSH, GSSG, SOD, CAT and FRAP were evaluated in the liver while ORAC, FRAP and lipid peroxidation were determined in the serum. Histological examination of the liver tissue was carried out. Results: Treatment with aqueous extract of A. difformis significantly (p<0.05) reduced blood glucose and reversed steatosis in the diabetic-treated rats. The antioxidant status of diabetic-treated rats was significantly (p<0.05) improved. Serum levels of liver dysfunction markers were significantly (p<0.05) reduced in diabetic-treated rats. Conclusion: The findings in this study revealed that 400 mg/kgBW Anchomanes difformis was more effective than 200 mg/kg BW in ameliorating diabetes-induced hepatopathy, however, both doses of Anchomanes difformis demonstrated more antidiabetic ability than glibenclamide. Anchomanes difformis may be a novel and potential therapeutic agent in the management of diabetes and resulted hepatic injuries.","PeriodicalId":12990,"journal":{"name":"Herba Polonica","volume":"66 1","pages":"18 - 36"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Herba Polonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/hepo-2020-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3
Abstract
Summary Introduction: The liver is involved in the metabolism of xenobiotics and their metabolites and it is vulnerable to oxidative damage. Hyperglycaemia is highly implicated in the progression of diabetes mellitus, and adversely affects the liver. Though, conventional hypoglycaemic drugs may be effective in reducing blood glucose, they do not appear to be effective in attenuating the progression of diabetes and its complications. Objective: This study evaluated the ameliorative effects of Anchomanes difformis on hyperglycaemia and hepatic injuries in type 2 diabetes. Methods: Type 2 diabetes was induced in male Wistar rats with a single intraperitoneal injection of streptozotocin (40 mg/kg BW) after two weeks of fructose (10%) administration. Aqueous extract of A. difformis (200 and 400 mg/kg BW) and glibenclamide (5 mg/kg BW) were administered orally for six weeks. Blood glucose concentrations were measured. Serum levels of liver dysfunction markers (ALT, AST, and ALP), total cholesterol, triglycerides, HDL- and LDL-cholesterol were investigated. Total protein, albumin, and globulin were also assessed. Antioxidant parameters: ORAC, GSH, GSSG, SOD, CAT and FRAP were evaluated in the liver while ORAC, FRAP and lipid peroxidation were determined in the serum. Histological examination of the liver tissue was carried out. Results: Treatment with aqueous extract of A. difformis significantly (p<0.05) reduced blood glucose and reversed steatosis in the diabetic-treated rats. The antioxidant status of diabetic-treated rats was significantly (p<0.05) improved. Serum levels of liver dysfunction markers were significantly (p<0.05) reduced in diabetic-treated rats. Conclusion: The findings in this study revealed that 400 mg/kgBW Anchomanes difformis was more effective than 200 mg/kg BW in ameliorating diabetes-induced hepatopathy, however, both doses of Anchomanes difformis demonstrated more antidiabetic ability than glibenclamide. Anchomanes difformis may be a novel and potential therapeutic agent in the management of diabetes and resulted hepatic injuries.