Experimental Cryoablation of Thyroid Gland with Propilthiouracyl-Induced Diffuse Hyperplasiae

Q4 Medicine
K. Pobielienskyi, O. Pakhomov, Gurina Tetyana Gurina Tetyana, Liliia Pobielienska, Ievgen Legach Ievgen, G. Bozhok
{"title":"Experimental Cryoablation of Thyroid Gland with Propilthiouracyl-Induced Diffuse Hyperplasiae","authors":"K. Pobielienskyi, O. Pakhomov, Gurina Tetyana Gurina Tetyana, Liliia Pobielienska, Ievgen Legach Ievgen, G. Bozhok","doi":"10.15407/cryo31.02.168","DOIUrl":null,"url":null,"abstract":"Cryoablation under endoscopic control is considered to be a promising approach in therapy of benign nodules of thyroid gland (TG). However, pathologically altered TG tissue differs in thermal conductivity and heat capacity from normal one, therefore the model experiments in animals are necessary to determine the cryoablation parameters. In this research, the changes of temperature during cryoablation of experimental rat TG under normal conditions and the one with propylthiouracil (PTU)-induced diffuse hyperplasia (DH) were comparatively assessed. TG was cryo-ablated in rats, previously received a 0.1% PTU solution within 90 days, using a copper cryoprobe, cooled to liquid nitrogen temperature. The process was controlled using thermocouples placed at different distances from the iceball. Differences between thermograms of intact TG tissue and the samples with PTU-induced DH were established. To achieve the destruction effect of TG with DH to a depth of more than 1 mm, the need of implementing two freeze-thaw cycles with 120-second cryoprobe exposure was proven.","PeriodicalId":53457,"journal":{"name":"Problems of Cryobiology and Cryomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problems of Cryobiology and Cryomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/cryo31.02.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Cryoablation under endoscopic control is considered to be a promising approach in therapy of benign nodules of thyroid gland (TG). However, pathologically altered TG tissue differs in thermal conductivity and heat capacity from normal one, therefore the model experiments in animals are necessary to determine the cryoablation parameters. In this research, the changes of temperature during cryoablation of experimental rat TG under normal conditions and the one with propylthiouracil (PTU)-induced diffuse hyperplasia (DH) were comparatively assessed. TG was cryo-ablated in rats, previously received a 0.1% PTU solution within 90 days, using a copper cryoprobe, cooled to liquid nitrogen temperature. The process was controlled using thermocouples placed at different distances from the iceball. Differences between thermograms of intact TG tissue and the samples with PTU-induced DH were established. To achieve the destruction effect of TG with DH to a depth of more than 1 mm, the need of implementing two freeze-thaw cycles with 120-second cryoprobe exposure was proven.
丙硫脲基诱导甲状腺弥漫性增生的实验冷冻消融
内镜控制下的冷冻消融被认为是治疗甲状腺良性结节的一种有前途的方法。然而,病理改变的TG组织在热导率和热容方面与正常组织不同,因此有必要在动物身上进行模型实验来确定冷冻消融参数。本研究比较了正常条件下实验性大鼠TG和丙基硫氧嘧啶(PTU)诱导的弥漫性增生(DH)冷冻消融过程中温度的变化。在大鼠中冷冻消融TG,之前使用铜冷冻探针在90天内接受0.1%PTU溶液,冷却至液氮温度。这一过程是通过放置在距冰球不同距离的热电偶来控制的。建立了完整TG组织和PTU诱导DH的样品的热图之间的差异。为了实现DH对TG的破坏作用,深度超过1mm,需要在120秒的冷冻探针暴露下进行两次冻融循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Problems of Cryobiology and Cryomedicine
Problems of Cryobiology and Cryomedicine Medicine-Medicine (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: The Journal publishes the reviews and original papers on cryobiological and cryomedical research, in particular the elucidation of mechanisms of injuries occurring in biological objects and caused by the influence of low and ultra low temperatures; natural resistance of biologicals to cold and their recovery post effect; the development of effective methods of cryoprotection and technology of storage of biological resources under hypothermic and ultra low temperatures, application of hypothermia, cryotherapy and cryopreserved biologicals for treating various pathologies; cell and tissue based therapies and other issues of low-temperature biology and medicine, as well as development of devices and equipment for low temperature biology and medicine. The journal covers all topics related to low temperature biology, medicine and engineering. These include but are not limited to: low temperature storage of biologicals (human, animal or plant cells, tissues, and organs), including preparation for storage, thawing/warming, cell and tissue culturing etc. response of biologicals to low temperature; cold adaptation of animals and plants; utilisation of low temperature in medicine; experimental and clinical transplantation, cell and tissue based therapies; developing of cryobiological and cryomedical devices; organisation and functioning of low temperature banks etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信