Identification of corrosion formation in CORTEN steel using acousto-ultrasonic approach and deep learning

IF 3.5 Q1 ENGINEERING, MULTIDISCIPLINARY
C. Barile, C. Casavola, G. Pappalettera, V. Paramsamy Kannan
{"title":"Identification of corrosion formation in CORTEN steel using acousto-ultrasonic approach and deep learning","authors":"C. Barile, C. Casavola, G. Pappalettera, V. Paramsamy Kannan","doi":"10.1108/ijsi-03-2022-0038","DOIUrl":null,"url":null,"abstract":"PurposeThe acousto-ultrasonic approach is used for propagating stress waves through different configurations of CORTEN steel specimens. The propagated waves are recorded and analysed by piezoelectric sensors. The purpose of the study is to study the characteristics of the CORTEN steel by analysing the propagated waves.Design/methodology/approachTo investigate the attenuation in acoustic wave propagation due to the corrosion formation in CORTEN steel specimens and to train a neural network model to classify the attenuated acoustic waves automatically.FindingsDue to the corrosion formation in CORTEN steel specimens, attenuation is observed in amplitude, energy, counts and duration of the propagated waves. When the waves are analysed in their time-frequency characteristics, attenuation is observed in their frequency and spectral energy.Originality/valueThe corrosion formation in CORTEN steel can automatically be analysed by using the acousto-ultrasonic approach and the trained deep learning neural network.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-03-2022-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThe acousto-ultrasonic approach is used for propagating stress waves through different configurations of CORTEN steel specimens. The propagated waves are recorded and analysed by piezoelectric sensors. The purpose of the study is to study the characteristics of the CORTEN steel by analysing the propagated waves.Design/methodology/approachTo investigate the attenuation in acoustic wave propagation due to the corrosion formation in CORTEN steel specimens and to train a neural network model to classify the attenuated acoustic waves automatically.FindingsDue to the corrosion formation in CORTEN steel specimens, attenuation is observed in amplitude, energy, counts and duration of the propagated waves. When the waves are analysed in their time-frequency characteristics, attenuation is observed in their frequency and spectral energy.Originality/valueThe corrosion formation in CORTEN steel can automatically be analysed by using the acousto-ultrasonic approach and the trained deep learning neural network.
利用声超声方法和深度学习识别CORTEN钢中的腐蚀形成
目的利用声-超声方法研究应力波在不同结构的CORTEN钢试件中的传播。通过压电传感器记录和分析传播波。研究的目的是通过分析传播波来研究CORTEN钢的特性。设计/方法/方法研究由于CORTEN钢试样腐蚀形成的声波传播衰减,并训练神经网络模型对衰减的声波进行自动分类。由于腐蚀在CORTEN钢试样中形成,衰减在振幅,能量,传播波的计数和持续时间中被观察到。当分析这些波的时频特性时,可以观察到它们的频率和频谱能量的衰减。利用声-超声方法和训练好的深度学习神经网络可以自动分析CORTEN钢的腐蚀形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Structural Integrity
International Journal of Structural Integrity ENGINEERING, MULTIDISCIPLINARY-
CiteScore
5.40
自引率
14.80%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信