Identification and characterization of microRNAs responsive to fluoride toxicity in rice (Oryza sativa L.)

IF 2.2 Q3 GENETICS & HEREDITY
Tamarapalli Sravya Sruti, Sasmita Mohanty, Raj Kumar Joshi
{"title":"Identification and characterization of microRNAs responsive to fluoride toxicity in rice (Oryza sativa L.)","authors":"Tamarapalli Sravya Sruti,&nbsp;Sasmita Mohanty,&nbsp;Raj Kumar Joshi","doi":"10.1016/j.plgene.2023.100426","DOIUrl":null,"url":null,"abstract":"<div><p>MicroRNAs (miRNAs) are a class of small non-coding RNAs that act as important modulators of gene expression related to several stress responses in plants. While several miRNAs have been implicated in the modulation of multiple abiotic and biotic stresses in rice, there role in response to fluoride stress is yet to be explored. In the present study, fourteen conserved rice miRNAs with proven role in multiple stress response were analysed to identify differentially expressed miRNAs in response to fluoride toxicity in two popular rice varieties- Gobindobhog (GB; F-tolerant) and IR64 (F-sensitive). Stem-Loop RT-PCR revealed that miR156, miR166, and miR171 were significantly induced in GB seedlings post treatment with fluoride. Likewise, miR160, miR319, miR396, and miR444 were prominently induced in the fluoride-sensitive IR64. Additionally, miR393 was significantly induced post-treatment with fluoride stress in both the genotypes exhibiting a basal response to fluoride toxicity. Further, we computationally predicted the miRNA targets many of which encoded transcription factors associated with stress response mechanism. The miRNA targets were experimentally validated using ligation mediated 5′ rapid amplification of cDNA ends analysis. Quantitative RT-PCR analysis of nine selected miRNA target genes (Os11g30370, Os06g47150, Os06g03670, Os04g48290, Os02g44360, Os08g34380, Os05g05800, Os04g57050, Os04g51350) revealed simultaneous reciprocal changes in the expression patterns of the miRNAs and the corresponding target genes suggesting their involvement in the modulation of fluoride stress response in rice. Analysis of proximal promoter sequences of the F-responsive miRNAs revealed that these miRNAs possess stress-responsive, elicitor and hormonal related motifs. Overall, our results suggest that multiple conserved miRNAs are involved in fluoride toxicity and a miRNA-mediated regulation of signal response is critical for rice response to fluoride stress.</p></div>","PeriodicalId":38041,"journal":{"name":"Plant Gene","volume":"35 ","pages":"Article 100426"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352407323000240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs that act as important modulators of gene expression related to several stress responses in plants. While several miRNAs have been implicated in the modulation of multiple abiotic and biotic stresses in rice, there role in response to fluoride stress is yet to be explored. In the present study, fourteen conserved rice miRNAs with proven role in multiple stress response were analysed to identify differentially expressed miRNAs in response to fluoride toxicity in two popular rice varieties- Gobindobhog (GB; F-tolerant) and IR64 (F-sensitive). Stem-Loop RT-PCR revealed that miR156, miR166, and miR171 were significantly induced in GB seedlings post treatment with fluoride. Likewise, miR160, miR319, miR396, and miR444 were prominently induced in the fluoride-sensitive IR64. Additionally, miR393 was significantly induced post-treatment with fluoride stress in both the genotypes exhibiting a basal response to fluoride toxicity. Further, we computationally predicted the miRNA targets many of which encoded transcription factors associated with stress response mechanism. The miRNA targets were experimentally validated using ligation mediated 5′ rapid amplification of cDNA ends analysis. Quantitative RT-PCR analysis of nine selected miRNA target genes (Os11g30370, Os06g47150, Os06g03670, Os04g48290, Os02g44360, Os08g34380, Os05g05800, Os04g57050, Os04g51350) revealed simultaneous reciprocal changes in the expression patterns of the miRNAs and the corresponding target genes suggesting their involvement in the modulation of fluoride stress response in rice. Analysis of proximal promoter sequences of the F-responsive miRNAs revealed that these miRNAs possess stress-responsive, elicitor and hormonal related motifs. Overall, our results suggest that multiple conserved miRNAs are involved in fluoride toxicity and a miRNA-mediated regulation of signal response is critical for rice response to fluoride stress.

水稻(Oryza sativa L.)对氟毒性反应的微小RNA的鉴定和表征
微小RNA(miRNA)是一类小型非编码RNA,是植物中与几种应激反应相关的基因表达的重要调节剂。虽然一些miRNA与水稻多种非生物和生物胁迫的调节有关,但其在氟化物胁迫反应中的作用尚待探索。在本研究中,分析了14个已被证明在多重胁迫反应中发挥作用的保守水稻miRNA,以确定两个流行水稻品种Gobindobhog(GB;耐氟)和IR64(对氟敏感)在氟毒性反应中的差异表达miRNA。茎环RT-PCR显示miR156、miR166和miR171在用氟处理后的GB幼苗中被显著诱导。同样,miR160、miR319、miR396和miR444在氟敏感的IR64中被显著诱导。此外,在对氟毒性表现出基础反应的两种基因型中,miR393在氟胁迫处理后被显著诱导。此外,我们通过计算预测了miRNA靶点,其中许多靶点编码与应激反应机制相关的转录因子。使用连接介导的cDNA末端5′快速扩增分析对miRNA靶点进行了实验验证。对9个选定的miRNA靶基因(Os11g30370、Os06g47150、Os06g 03670、Os04g48290、Os02g44360、Os08g34380、Os05g05800、Os04g 57050和Os04g51350)的定量RT-PCR分析显示,miRNA和相应靶基因的表达模式同时发生相互变化,表明它们参与了水稻氟胁迫反应的调节。对F反应性miRNA的近端启动子序列的分析表明,这些miRNA具有应激反应性、诱导子和激素相关基序。总之,我们的研究结果表明,多种保守的miRNA参与了氟的毒性,miRNA介导的信号反应调节对水稻对氟胁迫的反应至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Gene
Plant Gene Agricultural and Biological Sciences-Plant Science
CiteScore
4.50
自引率
0.00%
发文量
42
审稿时长
51 days
期刊介绍: Plant Gene publishes papers that focus on the regulation, expression, function and evolution of genes in plants, algae and other photosynthesizing organisms (e.g., cyanobacteria), and plant-associated microorganisms. Plant Gene strives to be a diverse plant journal and topics in multiple fields will be considered for publication. Although not limited to the following, some general topics include: Gene discovery and characterization, Gene regulation in response to environmental stress (e.g., salinity, drought, etc.), Genetic effects of transposable elements, Genetic control of secondary metabolic pathways and metabolic enzymes. Herbal Medicine - regulation and medicinal properties of plant products, Plant hormonal signaling, Plant evolutionary genetics, molecular evolution, population genetics, and phylogenetics, Profiling of plant gene expression and genetic variation, Plant-microbe interactions (e.g., influence of endophytes on gene expression; horizontal gene transfer studies; etc.), Agricultural genetics - biotechnology and crop improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信