{"title":"Critical shock initiation characteristics of TNT with different charging types","authors":"J. H. Wang, M. Xia, N. Jiang","doi":"10.1007/s00193-022-01115-0","DOIUrl":null,"url":null,"abstract":"<div><p>To study the shock wave initiation characteristics of 2,4,6-trinitrotoluene (TNT) under different charging types, the shock wave pressure and shock wave attenuation of standard Pentolite explosives under different diaphragm thicknesses were quantitatively studied using the ion probe method. The gap tests of three explosives were carried out, including pressed TNT without restraint, pressed TNT with steel pipe restraint, and cast TNT with steel pipe restraint. The shock wave initiation pressures of TNT under the three different conditions were compared. Moreover, combined with the numerical simulation technology, the critical initiation pressure and the pressure cloud diagram of the gap test of TNT were obtained, and the dynamic change process of the shock wave in the diaphragm was acquired, which was difficult to measure in the experiments. The results showed that the critical initiation pressure of pressed TNT was significantly lower than that of cast TNT and that restraint can reduce the measured critical initiation pressure of TNT under certain conditions. Therefore, the research results may provide a basis for the damage range of TNTs with different charging types and the determination of the safety protection distance of shock wave initiation.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 1","pages":"39 - 49"},"PeriodicalIF":1.7000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-022-01115-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
To study the shock wave initiation characteristics of 2,4,6-trinitrotoluene (TNT) under different charging types, the shock wave pressure and shock wave attenuation of standard Pentolite explosives under different diaphragm thicknesses were quantitatively studied using the ion probe method. The gap tests of three explosives were carried out, including pressed TNT without restraint, pressed TNT with steel pipe restraint, and cast TNT with steel pipe restraint. The shock wave initiation pressures of TNT under the three different conditions were compared. Moreover, combined with the numerical simulation technology, the critical initiation pressure and the pressure cloud diagram of the gap test of TNT were obtained, and the dynamic change process of the shock wave in the diaphragm was acquired, which was difficult to measure in the experiments. The results showed that the critical initiation pressure of pressed TNT was significantly lower than that of cast TNT and that restraint can reduce the measured critical initiation pressure of TNT under certain conditions. Therefore, the research results may provide a basis for the damage range of TNTs with different charging types and the determination of the safety protection distance of shock wave initiation.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.