{"title":"Silicon Calorimeters","authors":"J. Brient, R. Rusack, F. Sefkow","doi":"10.1146/annurev-nucl-101917-021053","DOIUrl":null,"url":null,"abstract":"We review the development of silicon-based calorimeters from the very first applications of small calorimeters used in collider experiments to the large-scale systems that are being designed today. We discuss silicon-based electromagnetic calorimeters for future e− e+ colliders and for the upgrade of the CMS experiment's endcap calorimeter to be used in the high-luminosity phase of the LHC. We present the intrinsic advantages of silicon as an active detector material and highlight the enabling technologies that have made calorimeters with very high channel densities feasible. We end by discussing the outlook for further extensions to the silicon calorimeter concept, such as calorimeters with fine-pitched pixel detectors.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-nucl-101917-021053","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-101917-021053","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 5
Abstract
We review the development of silicon-based calorimeters from the very first applications of small calorimeters used in collider experiments to the large-scale systems that are being designed today. We discuss silicon-based electromagnetic calorimeters for future e− e+ colliders and for the upgrade of the CMS experiment's endcap calorimeter to be used in the high-luminosity phase of the LHC. We present the intrinsic advantages of silicon as an active detector material and highlight the enabling technologies that have made calorimeters with very high channel densities feasible. We end by discussing the outlook for further extensions to the silicon calorimeter concept, such as calorimeters with fine-pitched pixel detectors.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.