Courtney Dvorsky, Jessica L. McQuigg, Faythe Lopez, M. Boone
{"title":"Delayed Effects of Nutrients in the Larval Environment on Cope's Gray Treefrogs (Hyla chrysoscelis) Exposed to Batrachochytrium dendrobatidis","authors":"Courtney Dvorsky, Jessica L. McQuigg, Faythe Lopez, M. Boone","doi":"10.1670/21-058","DOIUrl":null,"url":null,"abstract":"Abstract. Excess nutrient runoff can profoundly alter aquatic habitats and has been associated with changes in host–pathogen interactions. Floating macrophyte mats have been suggested as a management strategy to improve water quality for aquatic communities and, thus, may have the potential to protect hosts from some disease outbreaks. We assessed the impact of ammonium nitrate and sodium phosphate addition in the presence or absence of floating macrophyte mats (blue flag iris [Iris versicolor] and ice dance sedge [Carex morrowii]) on Cope's Gray Treefrog (Hyla chrysoscelis) metamorphosis to examine whether macrophyte management treatments improve outcomes for amphibians. At metamorphosis, we infected individuals with the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), to assess whether larval treatments resulted in differential susceptibility to this pathogen. We found that nutrient addition significantly increased time to metamorphosis without affecting mass at metamorphosis or survival. Additionally, Bd exposure decreased mass of juvenile treefrogs, regardless of earlier larval environment or condition at metamorphosis. Macrophyte addition had no direct impact on larval anurans, but the aquatic community was altered via fluctuations in aquatic nutrient concentrations. Overall, our study suggests that nutrient exposure and Bd infection individually affect anurans, and larval exposure to nutrients may have latent effects on metamorphosed anurans that could affect future fitness.","PeriodicalId":54821,"journal":{"name":"Journal of Herpetology","volume":"56 1","pages":"470 - 477"},"PeriodicalIF":0.8000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Herpetology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1670/21-058","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract. Excess nutrient runoff can profoundly alter aquatic habitats and has been associated with changes in host–pathogen interactions. Floating macrophyte mats have been suggested as a management strategy to improve water quality for aquatic communities and, thus, may have the potential to protect hosts from some disease outbreaks. We assessed the impact of ammonium nitrate and sodium phosphate addition in the presence or absence of floating macrophyte mats (blue flag iris [Iris versicolor] and ice dance sedge [Carex morrowii]) on Cope's Gray Treefrog (Hyla chrysoscelis) metamorphosis to examine whether macrophyte management treatments improve outcomes for amphibians. At metamorphosis, we infected individuals with the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), to assess whether larval treatments resulted in differential susceptibility to this pathogen. We found that nutrient addition significantly increased time to metamorphosis without affecting mass at metamorphosis or survival. Additionally, Bd exposure decreased mass of juvenile treefrogs, regardless of earlier larval environment or condition at metamorphosis. Macrophyte addition had no direct impact on larval anurans, but the aquatic community was altered via fluctuations in aquatic nutrient concentrations. Overall, our study suggests that nutrient exposure and Bd infection individually affect anurans, and larval exposure to nutrients may have latent effects on metamorphosed anurans that could affect future fitness.
期刊介绍:
The Journal of Herpetology accepts manuscripts on all aspects on the biology of amphibians and reptiles including their behavior, conservation, ecology, morphology, physiology, and systematics, as well as herpetological education. We encourage authors to submit manuscripts that are data-driven and rigorous tests of hypotheses, or provide thorough descriptions of novel taxa (living or fossil). Topics may address theoretical issues in a thoughtful, quantitative way. Reviews and policy papers that provide new insight on the herpetological sciences are also welcome, but they must be more than simple literature reviews. These papers must have a central focus that propose a new argument for understanding a concept or a new approach for answering a question or solving a problem. Focus sections that combine papers on related topics are normally determined by the Editors. Publication in the Long-Term Perspectives section is by invitation only. Papers on captive breeding, new techniques or sampling methods, anecdotal or isolated natural history observations, geographic range extensions, and essays should be submitted to our sister journal, Herpetological Review.