{"title":"Extremal clustering and cluster counting for spatial random fields","authors":"Anders Rønn-Nielsen, Mads Stehr","doi":"10.3150/22-bej1561","DOIUrl":null,"url":null,"abstract":"We consider a stationary random field indexed by an increasing sequence of subsets of $\\mathbb{Z}^d$ obeying a very broad geometrical assumption on how the sequence expands. Under certain mixing and local conditions, we show how the tail distribution of the individual variables relates to the tail behavior of the maximum of the field over the index sets in the limit as the index sets expand. Furthermore, in a framework where we let the increasing index sets be scalar multiplications of a fixed set $C$, potentially with different scalars in different directions, we use two cluster definitions to define associated cluster counting point processes on the rescaled index set $C$; one cluster definition divides the index set into more and more boxes and counts a box as a cluster if it contains an extremal observation. The other cluster definition that is more intuitive considers extremal points to be in the same cluster, if they are close in distance. We show that both cluster point processes converge to a Poisson point process on $C$. Additionally, we find a limit of the mean cluster size. Finally, we pay special attention to the case without clusters.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1561","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
We consider a stationary random field indexed by an increasing sequence of subsets of $\mathbb{Z}^d$ obeying a very broad geometrical assumption on how the sequence expands. Under certain mixing and local conditions, we show how the tail distribution of the individual variables relates to the tail behavior of the maximum of the field over the index sets in the limit as the index sets expand. Furthermore, in a framework where we let the increasing index sets be scalar multiplications of a fixed set $C$, potentially with different scalars in different directions, we use two cluster definitions to define associated cluster counting point processes on the rescaled index set $C$; one cluster definition divides the index set into more and more boxes and counts a box as a cluster if it contains an extremal observation. The other cluster definition that is more intuitive considers extremal points to be in the same cluster, if they are close in distance. We show that both cluster point processes converge to a Poisson point process on $C$. Additionally, we find a limit of the mean cluster size. Finally, we pay special attention to the case without clusters.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.