Growth and nutrient uptake of haloxylon and atriplex as affected by mycorrhizal symbiosis under combined drought and salinity stresses

IF 1.5 4区 农林科学 Q4 SOIL SCIENCE
Mohammad Hossein Noshad, E. Chavoshi, M. Mosaddeghi, V. Dorostkar, F. Hosseini
{"title":"Growth and nutrient uptake of haloxylon and atriplex as affected by mycorrhizal symbiosis under combined drought and salinity stresses","authors":"Mohammad Hossein Noshad, E. Chavoshi, M. Mosaddeghi, V. Dorostkar, F. Hosseini","doi":"10.1139/cjss-2022-0069","DOIUrl":null,"url":null,"abstract":"Abstract This study was conducted to determine the effect of arbuscular mycorrhizal fungi (AMF) symbiosis on plant growth and nutrient uptake under combined drought and salinity stresses. A pot experiment was carried out with a factorial arrangement of treatments in a completely randomized design with three replications. Experimental treatments included two plant types (Atriplex canescens and Haloxylon ammodendron) with three levels of inoculation of fungal species (Funneliformis geosporus, Funneliformis mosseae, and control), two levels of soil salinity stress (7 and 14 dS m–1), and two levels of drought stress (50% and 80% of management allowable depletion). Vegetative parameters, as well as root N, P, and K concentrations and uptakes, mycorrhizal growth response, mycorrhizal nitrogen response, mycorrhizal phosphorus response, mycorrhizal potassium response, and root colonization were measured. The results showed that the application of AMF increased the plant growth variables such as stem diameter, root length, shoot dry weights, and shoot to root ratio as well as nitrogen and phosphorus uptakes. The application of both AMF types was effective as compared to the control. However, F. mosseae indicated better performance especially, in terms of the effect on plant growth variables. Also, F. mosseae was more effective to relieve stress (i.e., salinity and drought) than F. geosporus. There was a significant difference between plant types and H. ammodendron had better efficiency than A. canescens under drought and salinity stresses. Based on the results, planting of H. ammodendron inoculated with F. mosseae might be recommended for soil conservation in the arid environments.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":"103 1","pages":"305 - 317"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2022-0069","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This study was conducted to determine the effect of arbuscular mycorrhizal fungi (AMF) symbiosis on plant growth and nutrient uptake under combined drought and salinity stresses. A pot experiment was carried out with a factorial arrangement of treatments in a completely randomized design with three replications. Experimental treatments included two plant types (Atriplex canescens and Haloxylon ammodendron) with three levels of inoculation of fungal species (Funneliformis geosporus, Funneliformis mosseae, and control), two levels of soil salinity stress (7 and 14 dS m–1), and two levels of drought stress (50% and 80% of management allowable depletion). Vegetative parameters, as well as root N, P, and K concentrations and uptakes, mycorrhizal growth response, mycorrhizal nitrogen response, mycorrhizal phosphorus response, mycorrhizal potassium response, and root colonization were measured. The results showed that the application of AMF increased the plant growth variables such as stem diameter, root length, shoot dry weights, and shoot to root ratio as well as nitrogen and phosphorus uptakes. The application of both AMF types was effective as compared to the control. However, F. mosseae indicated better performance especially, in terms of the effect on plant growth variables. Also, F. mosseae was more effective to relieve stress (i.e., salinity and drought) than F. geosporus. There was a significant difference between plant types and H. ammodendron had better efficiency than A. canescens under drought and salinity stresses. Based on the results, planting of H. ammodendron inoculated with F. mosseae might be recommended for soil conservation in the arid environments.
干旱和盐胁迫下菌根共生对梭梭和凤梨生长和养分吸收的影响
摘要本试验旨在研究干旱和盐胁迫下丛枝菌根真菌(AMF)共生对植物生长和养分吸收的影响。盆栽试验采用全随机设计,3个重复。试验处理包括两种植物类型(黑藤和梭梭),接种三种真菌(地孢漏斗形真菌、mosse漏斗形真菌和对照),两种土壤盐胁迫(7和14 dS m-1)和两种干旱胁迫(管理允许耗水量的50%和80%)。测定了营养参数、根系N、P、K浓度和吸收量、菌根生长响应、菌根氮响应、菌根磷响应、菌根钾响应和根定植。结果表明,AMF的施用增加了植株的茎粗、根长、茎干重、茎根比和氮磷吸收量。与控制相比,两种AMF类型的应用都是有效的。但在对植物生长变量的影响方面,苔藻表现出更好的性能。此外,藓苔比地孢更能有效地缓解胁迫(即盐度和干旱)。不同植物类型间存在显著差异,在干旱和盐胁迫下梭梭的效率优于梭梭。基于上述结果,在干旱环境下,推荐种植接种了苔藓镰刀菌的梭梭属土壤保持植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Canadian Journal of Soil Science
Canadian Journal of Soil Science 农林科学-土壤科学
CiteScore
2.90
自引率
11.80%
发文量
73
审稿时长
6.0 months
期刊介绍: The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信