ZnxZr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Junjun Cheng, Yitao Zhao, Guohao Xu, Peng Zhang, Xuedong Zhu, Fan Yang
{"title":"ZnxZr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide","authors":"Junjun Cheng,&nbsp;Yitao Zhao,&nbsp;Guohao Xu,&nbsp;Peng Zhang,&nbsp;Xuedong Zhu,&nbsp;Fan Yang","doi":"10.1007/s11705-022-2215-6","DOIUrl":null,"url":null,"abstract":"<div><p>Alkylation of benzene with carbon dioxide and hydrogen to produce toluene and xylene could increase the added-value of surplus benzene as well as relieve environmental problems like green-house effect. In this work, the alkylation benzene with carbon dioxide and hydrogen reaction was proceeded by using the mixture of zinc-zirconium oxide and HZSM-5 as bifunctional catalyst. The equivalent of Zn/Zr = 1 displays the best catalytic performance at 425 °C and 3.0 MPa, and benzene conversion reaches 42.9% with a selectivity of 90% towards toluene and xylene. Moreover, the carbon dioxide conversion achieves 23.3% and the carbon monoxide selectivity is lower than 35%, indicating that more than 50% carbon dioxide has been effectively incorporated into the target product, which is the best result as far as we know. Combined with characterizations, it indicated that the Zn and Zr formed a solid solution under specific conditions (Zn/Zr = 1). The as-formed solid solution not only possesses a high surface area but also provides a large amount of oxygen vacancies. Additionally, the bifunctional catalyst has excellent stabilities that could keep operating without deactivation for at least 80 h. This work provides promising industrial applications for the upgrading of aromatics.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 4","pages":"404 - 414"},"PeriodicalIF":4.3000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-022-2215-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Alkylation of benzene with carbon dioxide and hydrogen to produce toluene and xylene could increase the added-value of surplus benzene as well as relieve environmental problems like green-house effect. In this work, the alkylation benzene with carbon dioxide and hydrogen reaction was proceeded by using the mixture of zinc-zirconium oxide and HZSM-5 as bifunctional catalyst. The equivalent of Zn/Zr = 1 displays the best catalytic performance at 425 °C and 3.0 MPa, and benzene conversion reaches 42.9% with a selectivity of 90% towards toluene and xylene. Moreover, the carbon dioxide conversion achieves 23.3% and the carbon monoxide selectivity is lower than 35%, indicating that more than 50% carbon dioxide has been effectively incorporated into the target product, which is the best result as far as we know. Combined with characterizations, it indicated that the Zn and Zr formed a solid solution under specific conditions (Zn/Zr = 1). The as-formed solid solution not only possesses a high surface area but also provides a large amount of oxygen vacancies. Additionally, the bifunctional catalyst has excellent stabilities that could keep operating without deactivation for at least 80 h. This work provides promising industrial applications for the upgrading of aromatics.

ZnxZr/HZSM-5作为苯与二氧化碳烷基化反应的高效催化剂
苯与二氧化碳和氢气的烷基化反应生成甲苯和二甲苯,可以提高剩余苯的附加值,缓解温室效应等环境问题。本文以氧化锌锆和HZSM-5为双功能催化剂,进行了苯与二氧化碳和氢气的烷基化反应。在425℃和3.0 MPa条件下,Zn/Zr = 1的催化当量表现出最佳的催化性能,苯的转化率达到42.9%,对甲苯和二甲苯的选择性为90%。而且,二氧化碳转化率达到23.3%,一氧化碳选择性低于35%,说明50%以上的二氧化碳已有效混入目标产物中,这是目前所知的最好结果。结合表征表明,在特定条件下(Zn/Zr = 1), Zn和Zr形成了固溶体,形成的固溶体不仅具有高的表面积,而且提供了大量的氧空位。此外,该双功能催化剂具有优异的稳定性,可以在不失活的情况下保持运行至少80小时。该工作为芳烃升级提供了有前景的工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信