Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Zihuan Yu, Haiqing Yan, Chaonan Wang, Zheng Wang, Huiqin Yao, Rong Liu, Cheng Li, Shulan Ma
{"title":"Oxygen-deficient MoOx/Ni3S2 heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogen evolution reaction","authors":"Zihuan Yu,&nbsp;Haiqing Yan,&nbsp;Chaonan Wang,&nbsp;Zheng Wang,&nbsp;Huiqin Yao,&nbsp;Rong Liu,&nbsp;Cheng Li,&nbsp;Shulan Ma","doi":"10.1007/s11705-022-2228-1","DOIUrl":null,"url":null,"abstract":"<div><p>High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoO<sub><i>x</i></sub>/Ni<sub>3</sub>S<sub>2</sub> spheres comprising Ni<sub>3</sub>S<sub>2</sub> nanoparticles inside and oxygen-deficient amorphous MoO<sub><i>x</i></sub> outside <i>in situ</i> grow on Ni foam (NF), to assembly the heterostructure composites of MoO<sub><i>x</i></sub>/Ni<sub>3</sub>S<sub>2</sub>/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoO<sub><i>x</i></sub>/Ni<sub>3</sub>S<sub>2</sub>/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA·cm<sup>−2</sup> (<i>η</i><sub>10</sub> = 76 mV) and an ultra-small Tafel slope of 46 mV·dec<sup>−1</sup> in 0.5 mol·L<sup>−1</sup> H<sub>2</sub>SO<sub>4</sub>. More importantly, the catalyst shows prominent high catalytic stability for HER (&gt; 100 h). The acid-resistant MoO<sub><i>x</i></sub> wraps the inside Ni<sub>3</sub>S<sub>2</sub>/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoO<sub><i>x</i></sub>/Ni<sub>3</sub>S<sub>2</sub> heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption (∣Δ<i>G</i><sub>H*</sub>∣) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoO<sub><i>x</i></sub>/Ni<sub>3</sub>S<sub>2</sub>/NF is promising to serve as a highly effective and durable electrocatalyst toward HER.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"17 4","pages":"437 - 448"},"PeriodicalIF":4.3000,"publicationDate":"2023-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-022-2228-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3

Abstract

High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoOx/Ni3S2 spheres comprising Ni3S2 nanoparticles inside and oxygen-deficient amorphous MoOx outside in situ grow on Ni foam (NF), to assembly the heterostructure composites of MoOx/Ni3S2/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoOx/Ni3S2/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA·cm−2 (η10 = 76 mV) and an ultra-small Tafel slope of 46 mV·dec−1 in 0.5 mol·L−1 H2SO4. More importantly, the catalyst shows prominent high catalytic stability for HER (> 100 h). The acid-resistant MoOx wraps the inside Ni3S2/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoOx/Ni3S2 heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption (∣ΔGH*∣) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoOx/Ni3S2/NF is promising to serve as a highly effective and durable electrocatalyst toward HER.

泡沫镍表面生长的MoOx/Ni3S2异质结构作为析氢反应高效耐用的自持型电催化剂
高性能、超耐用的电催化剂对于水裂解过程中的析氢反应至关重要。本文采用单锅溶剂热法,在Ni泡沫(NF)上原位生长由Ni3S2纳米粒子和缺氧无定形MoOx组成的MoOx/Ni3S2球,组装MoOx/Ni3S2/NF异质结构复合材料。通过调节乙醇与水的体积比,优化后的MoOx/Ni3S2/NF-11具有最佳的HER性能,在0.5 mol·L−1 H2SO4中,过电位极低(76 mV),电流密度达到10 mA·cm−2 (η10 = 76 mV), Tafel斜率为46 mV·dec−1。更重要的是,该催化剂对HER (>耐酸性MoOx包裹在Ni3S2/NF内部,保证了催化剂在酸性条件下的高稳定性。密度泛函数理论计算证实,现有的氧空位和MoOx/Ni3S2异质结构都有利于作为主要活性位的Mo位点上氢吸附的还原吉布斯自由能(∣ΔGH*∣)。异质结构有效地降低了O空位的形成能,导致催化剂的表面重构,进一步提高了HER性能。MoOx/Ni3S2/NF有望成为高效耐用的HER电催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信