{"title":"Better recognition of limnic materials at the great group and subgroup levels of the Organic Order of the Canadian System of Soil Classification","authors":"D. Saurette, Raphaël Deragon","doi":"10.1139/cjss-2022-0030","DOIUrl":null,"url":null,"abstract":"Abstract In the Canadian System of Soil Classification (CSSC), soils of the Organic order are classified at the great group level primarily based on the dominant organic material in the middle tier. The system recognizes four types of organic horizons: fibric (Of), mesic (Om), humic (Oh), and coprogenous earth (Oco), of which only the latter is not recognized at the great group level of the Organic order. Furthermore, at the subgroup level, Limnic subgroups cannot have terric or hydric layers. This is problematic in soils where the middle tier is dominated by limnic materials, and those which have dominantly limnic materials and have a terric layer. We describe 29 soil profiles in Ontario and Quebec, which are either poorly captured in the CSSC or that cannot be classified into the Organic order based on their diagnostic criteria. Based on an analysis of soil survey information in five provinces across Canada, we estimate 32057 ha of organic soils which potentially contain limnic deposits. In key vegetable-producing areas of Quebec, large organic deposits in agricultural production are subject to peat subsidence and erosion, resulting in shallower depths to underlying coprogenous earth, which is not a suitable medium for crop production. This can potentially have negative effects on crops when mixed with humic materials in the plow layer. Due to these taxonomic and agronomic considerations, we propose the addition of a new great group, Limnisol, and suggest further integration of limnic materials at the subgroup level for the Humisol, Mesisol, and Fibrisol great groups.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":"103 1","pages":"1 - 20"},"PeriodicalIF":1.5000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2022-0030","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 30
Abstract
Abstract In the Canadian System of Soil Classification (CSSC), soils of the Organic order are classified at the great group level primarily based on the dominant organic material in the middle tier. The system recognizes four types of organic horizons: fibric (Of), mesic (Om), humic (Oh), and coprogenous earth (Oco), of which only the latter is not recognized at the great group level of the Organic order. Furthermore, at the subgroup level, Limnic subgroups cannot have terric or hydric layers. This is problematic in soils where the middle tier is dominated by limnic materials, and those which have dominantly limnic materials and have a terric layer. We describe 29 soil profiles in Ontario and Quebec, which are either poorly captured in the CSSC or that cannot be classified into the Organic order based on their diagnostic criteria. Based on an analysis of soil survey information in five provinces across Canada, we estimate 32057 ha of organic soils which potentially contain limnic deposits. In key vegetable-producing areas of Quebec, large organic deposits in agricultural production are subject to peat subsidence and erosion, resulting in shallower depths to underlying coprogenous earth, which is not a suitable medium for crop production. This can potentially have negative effects on crops when mixed with humic materials in the plow layer. Due to these taxonomic and agronomic considerations, we propose the addition of a new great group, Limnisol, and suggest further integration of limnic materials at the subgroup level for the Humisol, Mesisol, and Fibrisol great groups.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.