{"title":"Munc13b stimulus-dependently accumulates on granuphilin-mediated, docked granules prior to fusion.","authors":"Kouichi Mizuno, Tetsuro Izumi","doi":"10.1247/csf.22005","DOIUrl":null,"url":null,"abstract":"<p><p>The Rab27 effector granuphilin plays an indispensable role in stable docking of secretory granules to the plasma membrane by interacting with the complex of Munc18-1 and the fusion-incompetent, closed form of syntaxins-1~3. Although this process prevents spontaneous granule exocytosis, those docked granules actively fuse in parallel with other undocked granules after stimulation. Therefore, it is postulated that the closed form of syntaxins must be converted into the fusion-competent open form in a stimulus-dependent manner. Although Munc13 family proteins are generally thought to prime docked vesicles by facilitating conformational change in syntaxins, it is unknown which isoform acts in granuphilin-mediated, docked granule exocytosis. In the present study, we show that, although both Munc13a and Munc13b are expressed in mouse pancreatic islets and their beta-cell line MIN6, the silencing of Munc13b, but not that of Munc13a, severely affects glucose-induced insulin secretion. Furthermore, Munc13b accumulates on a subset of granules beneath the plasma membrane just prior to fusion during stimulation, whereas Munc13a is translocated to the plasma membrane where granules do not exist. When fluorescently labeled granuphilin was introduced to discriminate between molecularly docked granules and other undocked granules in living cells, Munc13b downregulation was observed to preferentially decrease the fusion of granuphilin-positive granules immobilized to the plasma membrane. These findings suggest that Munc13b promotes insulin exocytosis by clustering on molecularly docked granules in a stimulus-dependent manner.Key words: docking, insulin, live cell imaging, priming, TIRF microscopy.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"1 1","pages":"31-41"},"PeriodicalIF":2.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511056/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.22005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
The Rab27 effector granuphilin plays an indispensable role in stable docking of secretory granules to the plasma membrane by interacting with the complex of Munc18-1 and the fusion-incompetent, closed form of syntaxins-1~3. Although this process prevents spontaneous granule exocytosis, those docked granules actively fuse in parallel with other undocked granules after stimulation. Therefore, it is postulated that the closed form of syntaxins must be converted into the fusion-competent open form in a stimulus-dependent manner. Although Munc13 family proteins are generally thought to prime docked vesicles by facilitating conformational change in syntaxins, it is unknown which isoform acts in granuphilin-mediated, docked granule exocytosis. In the present study, we show that, although both Munc13a and Munc13b are expressed in mouse pancreatic islets and their beta-cell line MIN6, the silencing of Munc13b, but not that of Munc13a, severely affects glucose-induced insulin secretion. Furthermore, Munc13b accumulates on a subset of granules beneath the plasma membrane just prior to fusion during stimulation, whereas Munc13a is translocated to the plasma membrane where granules do not exist. When fluorescently labeled granuphilin was introduced to discriminate between molecularly docked granules and other undocked granules in living cells, Munc13b downregulation was observed to preferentially decrease the fusion of granuphilin-positive granules immobilized to the plasma membrane. These findings suggest that Munc13b promotes insulin exocytosis by clustering on molecularly docked granules in a stimulus-dependent manner.Key words: docking, insulin, live cell imaging, priming, TIRF microscopy.
期刊介绍:
Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print.
Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.