Hydrogel biomaterials to support and guide vascularization

IF 5 Q1 ENGINEERING, BIOMEDICAL
R. Chapla, J. West
{"title":"Hydrogel biomaterials to support and guide vascularization","authors":"R. Chapla, J. West","doi":"10.1088/2516-1091/abc947","DOIUrl":null,"url":null,"abstract":"Biomaterials can be intentionally designed to support and even guide vascularization for applications ranging from engineered organs to treatment of ischemic diseases like myocardial infarction and stroke. In order to appropriately design bioactive biomaterials for vascularization, it is important to understand the cellular and molecular events involved in angiogenesis and vasculogenesis. Cell-matrix and signaling biomolecule interactions that initiate and promote formation of vasculature in vivo can often be mimicked in biomaterial platforms. Hydrogels are frequently used in these applications because they are soft and hydrated with mechanical properties similar to soft tissues and because many synthetic hydrogels are essentially bioinert, allowing one to engineer in specific cell-material interactions. A variety of both naturally-derived and synthetic hydrogel bases are used for supporting vascularization, and these gels are tailored to possess mechanical properties, biodegradation, cell adhesive interactions, biochemical signaling, and/or architectural properties that can promote assembly and tubulogenesis by vascular cells. This article serves to review current hydrogel materials and the innovative design modifications implemented to guide and support the vascularization process.","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/abc947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7

Abstract

Biomaterials can be intentionally designed to support and even guide vascularization for applications ranging from engineered organs to treatment of ischemic diseases like myocardial infarction and stroke. In order to appropriately design bioactive biomaterials for vascularization, it is important to understand the cellular and molecular events involved in angiogenesis and vasculogenesis. Cell-matrix and signaling biomolecule interactions that initiate and promote formation of vasculature in vivo can often be mimicked in biomaterial platforms. Hydrogels are frequently used in these applications because they are soft and hydrated with mechanical properties similar to soft tissues and because many synthetic hydrogels are essentially bioinert, allowing one to engineer in specific cell-material interactions. A variety of both naturally-derived and synthetic hydrogel bases are used for supporting vascularization, and these gels are tailored to possess mechanical properties, biodegradation, cell adhesive interactions, biochemical signaling, and/or architectural properties that can promote assembly and tubulogenesis by vascular cells. This article serves to review current hydrogel materials and the innovative design modifications implemented to guide and support the vascularization process.
水凝胶生物材料支持和引导血管形成
生物材料可以有意设计用于支持甚至指导血管形成,应用范围从工程器官到心肌梗死和中风等缺血性疾病的治疗。为了适当地设计用于血管生成的生物活性生物材料,了解血管生成和血管生成中涉及的细胞和分子事件是重要的。启动和促进体内血管系统形成的细胞-基质和信号传导生物分子相互作用通常可以在生物材料平台中模拟。水凝胶经常用于这些应用,因为它们柔软且水合,具有类似于软组织的机械性能,并且因为许多合成水凝胶基本上是生物惰性的,允许人们在特定的细胞-材料相互作用中进行工程。各种天然和合成的水凝胶基质都用于支持血管形成,这些凝胶经过定制,具有机械性能、生物降解、细胞粘附相互作用、生物化学信号和/或结构特性,可以促进血管细胞的组装和管生成。本文综述了目前的水凝胶材料以及为指导和支持血管形成过程而进行的创新设计修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信